## Jianjian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4894764/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Activatable Near-Infrared Fluorescent Organic Nanoprobe for Hypochlorous Acid Detection in the<br>Early Diagnosis of Rheumatoid Arthritis. Analytical Chemistry, 2022, 94, 5805-5813.                        | 6.5 | 20        |
| 2  | An Activatable Near-Infrared Fluorescence Hydrogen Sulfide (H <sub>2</sub> S) Donor for Imaging<br>H <sub>2</sub> S Release and Inhibiting Inflammation in Cells. Analytical Chemistry, 2021, 93, 4894-4901. | 6.5 | 48        |
| 3  | Development of Second Near-Infrared Photoacoustic Imaging Agents. Trends in Chemistry, 2021, 3, 305-317.                                                                                                     | 8.5 | 38        |
| 4  | Development of a coumarin-based fluorescent probe for hydrogen peroxide based on the Payne/Dakin tandem reaction. Dyes and Pigments, 2021, 190, 109335.                                                      | 3.7 | 7         |
| 5  | Excimer-based Activatable Fluorescent Sensor for Sensitive Detection of Alkaline Phosphatase.<br>Chemical Research in Chinese Universities, 2021, 37, 960-966.                                               | 2.6 | 2         |
| 6  | An Edaravone-Guided Design of a Rhodamine-Based Turn-on Fluorescent Probe for Detecting Hydroxyl<br>Radicals in Living Systems. Analytical Chemistry, 2021, 93, 14343-14350.                                 | 6.5 | 26        |
| 7  | Activatable molecular agents for cancer theranostics. Chemical Science, 2020, 11, 618-630.                                                                                                                   | 7.4 | 116       |
| 8  | ExoTracker: a low-pH-activatable fluorescent probe for labeling exosomes and monitoring endocytosis and trafficking. Chemical Communications, 2020, 56, 14869-14872.                                         | 4.1 | 11        |
| 9  | Activatable Formation of Emissive Excimers for Highly Selective Detection of β-Galactosidase.<br>Analytical Chemistry, 2020, 92, 5733-5740.                                                                  | 6.5 | 27        |
| 10 | A boron nitride electrode modified with a nanocomposite prepared from an ionic liquid and tungsten<br>disulfide for voltammetric sensing of 4-aminophenol. Mikrochimica Acta, 2019, 186, 614.                | 5.0 | 16        |
| 11 | Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Scientific<br>Reports, 2019, 9, 11378.                                                                                | 3.3 | 23        |
| 12 | Michael Addition/S,N-Intramolecular Rearrangement Sequence Enables Selective Fluorescence<br>Detection of Cysteine and Homocysteine. Analytical Chemistry, 2019, 91, 10894-10900.                            | 6.5 | 47        |
| 13 | Recent Advances of Molecular Optical Probes in Imaging of Î <sup>2</sup> -Galactosidase. Bioconjugate Chemistry,<br>2019, 30, 2089-2101.                                                                     | 3.6 | 94        |
| 14 | 2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells. Mikrochimica Acta, 2019, 186, 402.                                           | 5.0 | 25        |
| 15 | A ratiometric fluorescent probe for the detection of endogenous hydroxyl radicals in living cells.<br>Talanta, 2019, 196, 317-324.                                                                           | 5.5 | 14        |
| 16 | A nitroso-based fluorogenic probe for rapid detection of hydrogen sulfide in living cells. Sensors<br>and Actuators B: Chemical, 2019, 281, 542-548.                                                         | 7.8 | 27        |
| 17 | A fluorescent probe for hydrazine based on a newly developed 1-indanone-fused coumarin scaffold.<br>Dyes and Pigments, 2019, 162, 112-119.                                                                   | 3.7 | 63        |
| 18 | Sensitive and Selective Fluorescent Probe for Selenol in Living Cells Designed via a p <i>K</i> <sub>a</sub> Shift Strategy. Analytical Chemistry, 2018, 90, 4119-4125.                                      | 6.5 | 26        |

Jianjian Zhang

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Nearâ€Infrared Fluorescent Molecular Probe for Sensitive Imaging of Keloid. Angewandte Chemie, 2018,<br>130, 1270-1274.                                                                                                                                              | 2.0  | 46        |
| 20 | Nearâ€Infrared Fluorescent Molecular Probe for Sensitive Imaging of Keloid. Angewandte Chemie -<br>International Edition, 2018, 57, 1256-1260.                                                                                                                       | 13.8 | 150       |
| 21 | Macrotheranostic Probe with Diseaseâ€Activated Nearâ€Infrared Fluorescence, Photoacoustic, and<br>Photothermal Signals for Imagingâ€Guided Therapy. Angewandte Chemie, 2018, 130, 7930-7934.                                                                         | 2.0  | 79        |
| 22 | Water-soluble fluorescent unimolecular micelles: ultra-small size, tunable fluorescence emission<br>from the visible to NIR region and enhanced biocompatibility for <i>in vitro</i> and <i>in vivo</i><br>bioimaging. Chemical Communications, 2018, 54, 6252-6255. | 4.1  | 20        |
| 23 | Macrotheranostic Probe with Diseaseâ€Activated Nearâ€Infrared Fluorescence, Photoacoustic, and<br>Photothermal Signals for Imagingâ€Guided Therapy. Angewandte Chemie - International Edition, 2018, 57,<br>7804-7808.                                               | 13.8 | 296       |
| 24 | A Dual-Modal Molecular Probe for Near-Infrared Fluorescence and Photoacoustic Imaging of Peroxynitrite. Analytical Chemistry, 2018, 90, 9301-9307.                                                                                                                   | 6.5  | 152       |
| 25 | Near-infrared fluorescence probes to detect reactive oxygen species for keloid diagnosis. Chemical<br>Science, 2018, 9, 6340-6347.                                                                                                                                   | 7.4  | 98        |
| 26 | Nanoprobes: Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite<br>(Adv. Mater. 6/2017). Advanced Materials, 2017, 29, .                                                                                                           | 21.0 | 4         |
| 27 | Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. Advanced<br>Materials, 2017, 29, 1604764.                                                                                                                                     | 21.0 | 220       |
| 28 | A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its<br>application in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy,<br>2016, 166, 31-37.                                           | 3.9  | 13        |
| 29 | A near-infrared fluorescent probe based on chloroacetate modified naphthofluorescein for<br>selectively detecting cysteine/homocysteine and its application in living cells. Photochemical and<br>Photobiological Sciences, 2016, 15, 1393-1399.                     | 2.9  | 11        |
| 30 | Naphthalimide derived fluorescent probes with turn-on response for Au3+ and the application for biological visualization. Biosensors and Bioelectronics, 2016, 83, 334-338.                                                                                          | 10.1 | 27        |
| 31 | A two-photon off-on fluorescence probe for imaging thiols in live cells and tissues. Photochemical and Photobiological Sciences, 2016, 15, 412-419.                                                                                                                  | 2.9  | 19        |
| 32 | A rational designed thiols fluorescence probe: the positional isomer in PET. Tetrahedron, 2016, 72, 2048-2056.                                                                                                                                                       | 1.9  | 13        |
| 33 | A phosphinate-based near-infrared fluorescence probe for imaging the superoxide radical anion in vitro and in vivo. Chemical Communications, 2016, 52, 2679-2682.                                                                                                    | 4.1  | 100       |
| 34 | Imaging of Fluoride Ion in Living Cells and Tissues with a Two-Photon Ratiometric Fluorescence Probe.<br>Sensors, 2015, 15, 1611-1622.                                                                                                                               | 3.8  | 20        |
| 35 | A Nearâ€Infrared Fluorescence Probe for Thiols Based on Analyteâ€Specific Cleavage of Carbamate and Its<br>Application in Bioimaging. European Journal of Organic Chemistry, 2015, 2015, 1711-1718.                                                                  | 2.4  | 27        |
| 36 | Near-Infrared and Naked-Eye Fluorescence Probe for Direct and Highly Selective Detection of Cysteine<br>and Its Application in Living Cells. Analytical Chemistry, 2015, 87, 4856-4863.                                                                              | 6.5  | 194       |

Jianjian Zhang

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Naked-Eye and Near-Infrared Fluorescence Probe for Hydrazine and Its Applications in In Vitro and In<br>Vivo Bioimaging. Analytical Chemistry, 2015, 87, 9101-9107.          | 6.5 | 185       |
| 38 | Unified Synthesis of (–)-Folicanthine and (–)-Ditryptophenaline Enabled by a Room Temperature<br>Nickel-Mediated Reductive Dimerization. Synthesis, 2014, 46, 1908-1916.     | 2.3 | 17        |
| 39 | Ni-Catalyzed Reductive Homocoupling of Unactivated Alkyl Bromides at Room Temperature and Its<br>Synthetic Application. Journal of Organic Chemistry, 2013, 78, 10960-10967. | 3.2 | 91        |
| 40 | Collective synthesis of several 2,7′-cyclolignans and their correlation by chemical transformations.<br>Organic and Biomolecular Chemistry, 2013, 11, 7574.                  | 2.8 | 29        |
| 41 | Nickel-Mediated Inter- and Intramolecular C–S Coupling of Thiols and Thioacetates with Aryl Iodides at Room Temperature. Organic Letters, 2013, 15, 550-553.                 | 4.6 | 154       |
| 42 | Total synthesis of (±)-sacidumlignans D and A through Ueno–Stork radical cyclization reaction.<br>Organic and Biomolecular Chemistry, 2013, 11, 2498.                        | 2.8 | 32        |
| 43 | Synthesis, Crystal Structure and Thermal Behavior of Co(en)3[B4O5(OH)4]Cl·3H2O and<br>[Ni(en)3][B5O6(OH)4]2·2H2O. Chinese Journal of Chemistry, 2009, 27, 494-500.           | 4.9 | 16        |