Maria Guix Noguera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4894531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano/Micromotors in (Bio)chemical Science Applications. Chemical Reviews, 2014, 114, 6285-6322.	23.0	465
2	Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6, 4445-4451.	7.3	371
3	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	4.5	300
4	Swimming Microrobots: Soft, Reconfigurable, and Smart. Advanced Functional Materials, 2018, 28, 1707228.	7.8	154
5	Micromotor-based lab-on-chip immunoassays. Nanoscale, 2013, 5, 1325-1331.	2.8	146
6	Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Science Robotics, 2021, 6, .	9.9	144
7	Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning. Nano Letters, 2016, 16, 817-821.	4.5	142
8	Micromotor Enhanced Microarray Technology for Protein Detection. Small, 2014, 10, 2542-2548.	5.2	105
9	Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Scientific Reports, 2016, 6, 21701.	1.6	103
10	Dynamic Polymeric Microtubes for the Remoteâ€Controlled Capture, Guidance, and Release of Sperm Cells. Advanced Materials, 2016, 28, 4084-4089.	11.1	101
11	Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosensors and Bioelectronics, 2010, 26, 1715-1718.	5.3	92
12	Bismuth nanoparticles for phenolic compounds biosensing application. Biosensors and Bioelectronics, 2013, 40, 57-62.	5.3	89
13	Selfâ€Propelled Micro/Nanoparticle Motors. Particle and Particle Systems Characterization, 2018, 35, 1700382.	1.2	76
14	Lightâ€Induced Motion of Microengines Based on Microarrays of TiO ₂ Nanotubes. Small, 2016, 12, 5497-5505.	5.2	68
15	Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. Chemical Communications, 2012, 48, 1686-1688.	2.2	64
16	Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains. Micromachines, 2018, 9, 68.	1.4	62
17	How to Improve Spermbot Performance. Advanced Functional Materials, 2015, 25, 2763-2770.	7.8	61
18	Biohybrid soft robots with self-stimulating skeletons. Science Robotics, 2021, 6, .	9.9	58

Maria Guix Noguera

#	Article	IF	CITATIONS
19	Enzyme entrapment by \hat{l}^2 -cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosensors and Bioelectronics, 2010, 26, 1768-1773.	5.3	52
20	A Microforce-Sensing Mobile Microrobot for Automated Micromanipulation Tasks. IEEE Transactions on Automation Science and Engineering, 2019, 16, 518-530.	3.4	47
21	Guided accumulation of active particles by topological design of a second-order skin effect. Nature Communications, 2021, 12, 4691.	5.8	44
22	Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets. Lab on A Chip, 2015, 15, 216-224.	3.1	32
23	3Dâ€Printed Microrobots with Integrated Structural Color for Identification and Tracking. Advanced Intelligent Systems, 2020, 2, 1900147.	3.3	32
24	Bismuth Film Combined with Screenâ€Printed Electrode as Biosensing Platform for Phenol Detection. Electroanalysis, 2010, 22, 1429-1436.	1.5	31
25	Tubular micromotors: from microjets to spermbots. Robotics and Biomimetics, 2014, 1, .	1.7	31
26	Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. Analyst, The, 2010, 135, 1918.	1.7	25
27	Towards Functional Mobile Microrobotic Systems. Robotics, 2019, 8, 69.	2.1	20
28	Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. Micromachines, 2019, 10, 230.	1.4	19
29	Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots. Surface Engineering and Applied Electrochemistry, 2015, 51, 3-8.	0.3	18
30	Magnetic and electrokinetic manipulations on a microchip device for beadâ€based immunosensing applications. Electrophoresis, 2011, 32, 861-869.	1.3	17
31	Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor. Nanotechnology, 2010, 21, 245502.	1.3	15
32	Real-Time Force-Feedback Micromanipulation Using Mobile Microrobots With Colored Fiducials. IEEE Robotics and Automation Letters, 2018, 3, 3591-3597.	3.3	15
33	Compact microcubic structures platform based on self-assembly Prussian blue nanoparticles with highly tuneable conductivity. Physical Chemistry Chemical Physics, 2010, 12, 15505.	1.3	13
34	3D-bioengineered model of human skeletal muscle tissue with phenotypic features of aging for drug testing purposes. Biofabrication, 2021, 13, 045011.	3.7	9
35	Design, Optimization and Characterization of Bio-Hybrid Actuators Based on 3D-Bioprinted Skeletal Muscle Tissue. Lecture Notes in Computer Science, 2019, , 205-215.	1.0	8
36	Micromotorâ€in‣ponge Platform for Multicycle Largeâ€Volume Degradation of Organic Pollutants. Small, 2022, 18, e2107619.	5.2	8

7	
4	
2	
0	
0	
	7 4 2 0