Gordana Dukovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48938/publications.pdf

Version: 2024-02-01

50 papers

4,767 citations

201674 27 h-index 197818 49 g-index

50 all docs 50 docs citations

50 times ranked

6239 citing authors

#	Article	IF	CITATIONS
1	The Optical Resonances in Carbon Nanotubes Arise from Excitons. Science, 2005, 308, 838-841.	12.6	1,114
2	Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016, 352, 448-450.	12.6	676
3	Characterization of Photochemical Processes for H ₂ Production by CdS Nanorod–[FeFe] Hydrogenase Complexes. Journal of the American Chemical Society, 2012, 134, 5627-5636.	13.7	326
4	Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes. Physical Review Letters, 2004, 92, 177401.	7.8	290
5	Reversible Surface Oxidation and Efficient Luminescence Quenching in Semiconductor Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 15269-15276.	13.7	227
6	Structural Dependence of Excitonic Optical Transitions and Band-Gap Energies in Carbon Nanotubes. Nano Letters, 2005, 5, 2314-2318.	9.1	226
7	Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures. Advanced Materials, 2008, 20, 4306-4311.	21.0	188
8	Electron Transfer Kinetics in CdS Nanorod–[FeFe]-Hydrogenase Complexes and Implications for Photochemical H ₂ Generation. Journal of the American Chemical Society, 2014, 136, 4316-4324.	13.7	177
9	Racemic Single-Walled Carbon Nanotubes Exhibit Circular Dichroism When Wrapped with DNA. Journal of the American Chemical Society, 2006, 128, 9004-9005.	13.7	124
10	Recent Progress in Photocatalysis Mediated by Colloidal IIâ€VI Nanocrystals. Israel Journal of Chemistry, 2012, 52, 1002-1015.	2.3	113
11	Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nature Chemistry, 2016, 8, 1061-1066.	13.6	108
12	Charge Transfer Dynamics between Photoexcited CdS Nanorods and Mononuclear Ru Water-Oxidation Catalysts. Journal of the American Chemical Society, 2013, 135, 3383-3386.	13.7	97
13	Direct Measurement of the Lifetime of Optical Phonons in Single-Walled Carbon Nanotubes. Physical Review Letters, 2008, 100, 225503.	7.8	84
14	Photocatalytic Regeneration of Nicotinamide Cofactors by Quantum Dot–Enzyme Biohybrid Complexes. ACS Catalysis, 2016, 6, 2201-2204.	11.2	80
15	(Ga _{1â€"<i>x</i>} Zn _{<i>x</i>})(N _{1â€"<i>x</i>} O _{<i>x</i>}) Nanocrystals: Visible Absorbers with Tunable Composition and Absorption Spectra. Nano Letters, 2012, 12, 3268-3272.	9.1	79
16	Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H ₂ Generation. Journal of Physical Chemistry C, 2018, 122, 741-750.	3.1	53
17	Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology, 2004, 15, 1450-1454.	2.6	45
18	Competition between electron transfer, trapping, and recombination in CdS nanorod–hydrogenase complexes. Physical Chemistry Chemical Physics, 2015, 17, 5538-5542.	2.8	45

#	Article	IF	CITATIONS
19	Impact of Chalcogenide Ligands on Excited State Dynamics in CdSe Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 13314-13324.	3.1	44
20	Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures. Nano Letters, 2017, 17, 3764-3774.	9.1	43
21	Pressure Response of Photoluminescence in Cesium Lead Iodide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 11024-11030.	3.1	41
22	Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots. Nano Letters, 2013, 13, 2924-2930.	9.1	40
23	Synthesis and characterization of (Ga _{1â^'x} O _x) nanocrystals with a wide range of compositions. Journal of Materials Chemistry A, 2016, 4, 2927-2935.	10.3	37
24	Comparison of Phonon Damping Behavior in Quantum Dots Capped with Organic and Inorganic Ligands. Nano Letters, 2018, 18, 3667-3674.	9.1	33
25	Defining Intermediates of Nitrogenase MoFe Protein during N ₂ Reduction under Photochemical Electron Delivery from CdS Quantum Dots. Journal of the American Chemical Society, 2020, 142, 14324-14330.	13.7	32
26	Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging. ACS Nano, 2014, 8, 8810-8818.	14.6	30
27	Solvents Effects on Charge Transfer from Quantum Dots. Journal of the American Chemical Society, 2015, 137, 3759-3762.	13.7	29
28	Electron Transfer from Semiconductor Nanocrystals to Redox Enzymes. Annual Review of Physical Chemistry, 2020, 71, 335-359.	10.8	27
29	Measurement of the optical Stark effect in semiconducting carbon nanotubes. Applied Physics A: Materials Science and Processing, 2009, 96, 283-287.	2.3	25
30	On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of Their Diffusion. Journal of Physical Chemistry Letters, 2018, 9, 3532-3537.	4.6	24
31	Quantum Efficiency of Charge Transfer Competing against Nonexponential Processes: The Case of Electron Transfer from CdS Nanorods to Hydrogenase. Journal of Physical Chemistry C, 2019, 123, 886-896.	3.1	24
32	Light-driven carbonâ°carbon bond formation via CO ₂ reduction catalyzed by complexes of CdS nanorods and a 2-oxoacid oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 135-140.	7.1	24
33	Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams. Journal of Physical Chemistry Letters, 2016, 7, 609-615.	4.6	23
34	Activation Thermodynamics and H/D Kinetic Isotope Effect of the H _{ox} to H _{red} H ⁺ Transition in [FeFe] Hydrogenase. Journal of the American Chemical Society, 2017, 139, 12879-12882.	13.7	23
35	Excitation-Rate Determines Product Stoichiometry in Photochemical Ammonia Production by CdS Quantum Dot-Nitrogenase MoFe Protein Complexes. ACS Catalysis, 2020, 10, 11147-11152.	11.2	23
36	Ultrafast Hole Transfer from CdS Quantum Dots to a Water Oxidation Catalyst. Journal of Physical Chemistry C, 2018, 122, 17559-17565.	3.1	21

#	Article	IF	CITATIONS
37	Strong Visible Absorption and Broad Time Scale Excited-State Relaxation in (Ga _{1â€"<i>x</i>} Zn _{<i>x</i>})(N _{1â€"<i>x</i>} O _{<i>x</i>}) Nanocrystals. Journal of the American Chemical Society, 2015, 137, 6452-6455.	13.7	20
38	Control of Elemental Distribution in the Nanoscale Solid-State Reaction That Produces (Ga _{1â€"<i>x</i>} Zn _{<i>x</i>})(N _{1â€"<i>x</i>} O _{<i>x</i>}) Nanocrystals. ACS Nano, 2017, 11, 8401-8412.	14.6	20
39	Chalcogenide-Ligand Passivated CdTe Quantum Dots Can Be Treated as Core/Shell Semiconductor Nanostructures. Journal of Physical Chemistry C, 2014, 118, 28170-28178.	3.1	19
40	Temperature-Dependent Transient Absorption Spectroscopy Elucidates Trapped-Hole Dynamics in CdS and CdSe Nanorods. Journal of Physical Chemistry Letters, 2019, 10, 2782-2787.	4.6	19
41	Synthesis, optical, and photocatalytic properties of cobalt mixed-metal spinel oxides Co(Al _{1â^x} Ga _x) ₂ O ₄ . Journal of Materials Chemistry A, 2015, 3, 8115-8122.	10.3	18
42	Trapped-Hole Diffusion in Photoexcited CdSe Nanorods. Journal of Physical Chemistry C, 2018, 122, 16974-16982.	3.1	16
43	Photocharging of Colloidal CdS Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 22650-22659.	3.1	13
44	Simultaneous Determination of Spectral Signatures and Decay Kinetics of Excited State Species in Semiconductor Nanocrystals Probed by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 8439-8447.	3.1	12
45	Layered Phosphonates in Colloidal Synthesis of Anisotropic ZnO Nanocrystals. Chemistry of Materials, 2013, 25, 4321-4329.	6.7	10
46	Binding Orientation of a Ruthenium-Based Water Oxidation Catalyst on a CdS QD Surface Revealed by NMR Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 9552-9556.	4.6	7
47	Dissecting Electronic-Structural Transitions in the Nitrogenase MoFe Protein P-Cluster during Reduction. Journal of the American Chemical Society, 2022, 144, 5708-5712.	13.7	7
48	The Kinetics of Electron Transfer from CdS Nanorods to the MoFe Protein of Nitrogenase. Journal of Physical Chemistry C, 2022, 126, 8425-8435.	3.1	7
49	The Motion of Trapped Holes on Nanocrystal Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 9876-9885.	4.6	4
50	Ultrafast electronic structures and dynamics of CdSe nanocrystals revealed by gas phase time-resolved photoelectron spectroscopy. , 2014, , .		0