Huaqiang Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4893637/publications.pdf Version: 2024-02-01

Нилоилис Сни

#	Article	IF	CITATIONS
1	Performance enhancement and fouling alleviation by controlling transmembrane pressure in a vibration membrane system for algae separation. Journal of Membrane Science, 2022, 647, 120252.	4.1	10
2	A promising microalgal wastewater cyclic cultivation technology: Dynamic simulations, economic viability, and environmental suitability. Water Research, 2022, 217, 118411.	5.3	18
3	PAC-UF Process Improving Surface Water Treatment: PAC Effects and Membrane Fouling Mechanism. Membranes, 2022, 12, 487.	1.4	4
4	Can flow-electrode capacitive deionization become a new in-situ soil remediation technology for heavy metal removal?. Journal of Hazardous Materials, 2021, 402, 123568.	6.5	39
5	Remarkable phosphate recovery from wastewater by a novel Ca/Fe composite: Synergistic effects of crystal structure and abundant oxygen-vacancies. Chemosphere, 2021, 266, 129102.	4.2	20
6	Simulation of cake layer topography in heterotrophic microalgae harvesting based on interface modified diffusion-limited-aggregation (IMDLA) and its implications for membrane fouling control. Journal of Membrane Science, 2021, 620, 118837.	4.1	5
7	Natural organic matter separation by forward osmosis: Performance and mechanisms. Water Research, 2021, 191, 116829.	5.3	13
8	UF fouling behavior of allelopathy of extracellular organic matter produced by mixed algae co-cultures. Separation and Purification Technology, 2021, 261, 118297.	3.9	18
9	Application of Coagulation–Membrane Rotation to Improve Ultrafiltration Performance in Drinking Water Treatment. Membranes, 2021, 11, 643.	1.4	4
10	Removal of natural organic matter in full-scale conventional and advanced water treatment plants: Assimilable organic carbon and its precursors. Chemical Engineering Journal Advances, 2021, 8, 100183.	2.4	4
11	Multi-dimensional in-depth dissection the algae-related membrane fouling in heterotrophic microalgae harvesting: Deposition dynamics, algae cake formation, and interaction force analysis. Journal of Membrane Science, 2021, 635, 119501.	4.1	17
12	Diatomite Dynamic Membrane Fouling Behaviour during Dewatering of Chlorella pyrenoidosa in Aquaculture Wastewater. Membranes, 2021, 11, 945.	1.4	1
13	Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: Role of Cu(0) and formation of reactive oxygen species. Chemosphere, 2020, 241, 125034.	4.2	19
14	Intelligent mitigation of fouling by means of membrane vibration for algae separation: Dynamics model, comprehensive evaluation, and critical vibration frequency. Water Research, 2020, 182, 115972.	5.3	18
15	Unraveling the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-Activated Peroxymonosulfate Process. Environmental Science & Technology, 2020, 54, 16231-16239.	4.6	310
16	The interaction between microalgae and membrane surface in filtration by uniform shearing vibration membrane. Algal Research, 2020, 50, 102012.	2.4	7
17	Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. Bioresource Technology, 2020, 315, 123738.	4.8	48
18	Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: Performance, mechanism and toxicity. Journal of Environmental Sciences, 2020, 91, 10-21.	3.2	82

Huaqiang Chu

#	Article	IF	CITATIONS
19	Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Research, 2019, 165, 114930.	5.3	59
20	The comparison between vibration and aeration on the membrane performance in algae harvesting. Journal of Membrane Science, 2019, 592, 117390.	4.1	29
21	Ultrafiltration membrane fouling performance by mixtures with micromolecular and macromolecular organics. Environmental Science: Water Research and Technology, 2019, 5, 277-286.	1.2	20
22	Performance and properties of coking nanofiltration concentrate treatment and membrane fouling mitigation by an Fe(<scp>ii</scp>)/persulfate-coagulation-ultrafiltration process. RSC Advances, 2019, 9, 15277-15287.	1.7	7
23	The influence of four pharmaceuticals on Chlorellapyrenoidosa culture. Scientific Reports, 2019, 9, 1624.	1.6	28
24	Cu(II)-enhanced activation of molecular oxygen using Fe(II): Factors affecting the yield of oxidants. Chemosphere, 2019, 221, 383-391.	4.2	8
25	Highly efficient degradation of dimethyl phthalate from Cu(II) and dimethyl phthalate wastewater by EDTA enhanced ozonation: Performance, intermediates and mechanism. Journal of Hazardous Materials, 2019, 366, 378-385.	6.5	33
26	Degradation mechanism and kinetic modeling for UV/peroxydisulfate treatment of penicillin antibiotics. Chemical Engineering Journal, 2018, 341, 93-101.	6.6	43
27	Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron. Journal of Hazardous Materials, 2018, 344, 698-706.	6.5	15
28	Impact of transmembrane pressure (TMP) on membrane fouling in microalgae harvesting with a uniform shearing vibration membrane system. Algal Research, 2018, 35, 613-623.	2.4	35
29	Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds. Water Science and Technology, 2018, 2017, 248-255.	1.2	23
30	Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresource Technology, 2018, 266, 349-356.	4.8	62
31	A uniform shearing vibration membrane system reducing membrane fouling in algae harvesting. Journal of Cleaner Production, 2018, 196, 1026-1033.	4.6	35
32	Nutrients recycling and energy evaluation in a closed microalgal biofuel production system. Algal Research, 2018, 33, 399-405.	2.4	5
33	A Pilot cale Diatomite Membrane Bioreactor for Slightly Polluted Surface Water Treatment. Clean - Soil, Air, Water, 2018, 46, 1700117.	0.7	3
34	Assessing pre-adsorption time impact on ultrafiltration performance for surface water treatment. Water Science and Technology: Water Supply, 2018, 18, 950-955.	1.0	0
35	The filtration and fouling performance of membranes with different pore sizes in algae harvesting. Science of the Total Environment, 2017, 587-588, 87-93.	3.9	57
36	Increasing the vibration frequency to mitigate reversible and irreversible membrane fouling using an axial vibration membrane in microalgae harvesting. Journal of Membrane Science, 2017, 529, 215-223.	4.1	55

HUAQIANG CHU

#	Article	IF	CITATIONS
37	Effects of combined ozone and PAC pretreatment on ultrafiltration membrane fouling control and mechanisms. Journal of Membrane Science, 2017, 533, 378-389.	4.1	37
38	Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling. Journal of Membrane Science, 2016, 508, 127-135.	4.1	55
39	The impact of temperature on membrane fouling in algae harvesting. Algal Research, 2016, 16, 458-464.	2.4	40
40	Using axial vibration membrane process to mitigate membrane fouling and reject extracellular organic matter in microalgae harvesting. Journal of Membrane Science, 2016, 517, 30-38.	4.1	35
41	Fouling and Cake Behavior of Algal Organic Foulants on Microfiltration Membranes in Various Growth Phases. Clean - Soil, Air, Water, 2016, 44, 1661-1671.	0.7	1
42	Comparison of axial vibration membrane and submerged aeration membrane in microalgae harvesting. Bioresource Technology, 2016, 208, 178-183.	4.8	38
43	Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids. Water Research, 2016, 91, 251-263.	5.3	18
44	Multiple views of biological stability and optimized coagulation in the control of biostability in traditional water treatment processes: a pilot test. Desalination and Water Treatment, 2016, 57, 18619-18629.	1.0	2
45	Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology, 2015, 181, 54-61.	4.8	116
46	Effects of macro-porous anion exchange and coagulation treatment on organic removal and membrane fouling reduction in water treatment. Desalination, 2015, 355, 204-216.	4.0	12
47	Dewatering of Chlorella pyrenoidosa using a diatomite dynamic membrane: Characteristics of a long-term operation. Journal of Membrane Science, 2015, 492, 340-347.	4.1	17
48	Effect of temperature on extracellular organic matter (EOM) of Chlorella pyrenoidosa and effect of EOM on irreversible membrane fouling. Colloids and Surfaces B: Biointerfaces, 2015, 136, 431-439.	2.5	51
49	Effect of temperature on the conversion ratio of glucose to Chlorella pyrenoidosa cells: Reducing the cost of cultivation. Algal Research, 2015, 12, 431-435.	2.4	16
50	A membrane combined process to cope with algae blooms in water. Desalination, 2015, 355, 99-109.	4.0	45
51	Extraction procedure optimization and the characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) from Chlorella pyrenoidosa. Colloids and Surfaces B: Biointerfaces, 2015, 125, 238-246.	2.5	66
52	Understanding the fouling of algogenic organic matter in microfiltration using membrane–foulant interaction energy analysis: Effects of organic hydrophobicity. Colloids and Surfaces B: Biointerfaces, 2014, 122, 447-456.	2.5	36
53	Effect of PACs pretreatment on UF performance for NOM removal. Desalination and Water Treatment, 2014, 52, 6878-6885.	1.0	7
54	The Degradation of Natural Organic Matter in Surface Water by a Nanoâ€TiO ₂ /Diatomite Photocatalytic Reactor. Clean - Soil, Air, Water, 2014, 42, 1190-1198.	0.7	14

Huaqiang Chu

#	Article	IF	CITATIONS
55	Dynamic membrane bioreactor for wastewater treatment: Operation, critical flux, and dynamic membrane structure. Journal of Membrane Science, 2014, 450, 265-271.	4.1	70
56	Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination, 2014, 344, 71-78.	4.0	71
57	Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: Filtration performance, membrane fouling and cake behavior. Colloids and Surfaces B: Biointerfaces, 2014, 113, 458-466.	2.5	41
58	Fouling effects of algogenic organic matters during nanofiltration of naproxen. Desalination, 2014, 350, 69-78.	4.0	14
59	Characteristics of dynamic membrane filtration: structure, operation mechanisms, and cost analysis. Science Bulletin, 2014, 59, 247-260.	1.7	38
60	Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresource Technology, 2014, 170, 538-548.	4.8	120
61	Enhancing methane production from rice straw by extrusion pretreatment. Applied Energy, 2014, 122, 34-41.	5.1	140
62	Effects on the purification of tannic acid and natural dissolved organic matter by forward osmosis membrane. Journal of Membrane Science, 2014, 455, 31-43.	4.1	24
63	Evaluation of different algogenic organic matters on the fouling of microfiltration membranes. Desalination, 2014, 344, 329-338.	4.0	45
64	Characterization of dissolved organic matter in a dynamic membrane bioreactor for wastewater treatment. Science Bulletin, 2013, 58, 1717-1724.	1.7	10
65	Bio-enhanced powder-activated carbon dynamic membrane reactor for municipal wastewater treatment. Journal of Membrane Science, 2013, 433, 126-134.	4.1	37
66	Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes, 2013, 3, 226-241.	1.4	117
67	Study on surface water treatment by hybrid sand filtration and nanofiltration. Desalination and Water Treatment, 2013, 51, 5327-5336.	1.0	9
68	Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification. Water Science and Technology, 2012, 66, 1139-1146.	1.2	11
69	Pretreatment of micro-polluted surface water with a biologically enhanced PAC–diatomite dynamic membrane reactor to produce drinking water. Desalination and Water Treatment, 2012, 40, 84-91.	1.0	19
70	Pilot-scale hybrid bio-diatomite/dynamic membrane reactor for slightly polluted raw water purification. Desalination, 2012, 285, 73-82.	4.0	33
71	Pollutant removal mechanisms in a bio-diatomite dynamic membrane reactor for micro-polluted surface water purification. Desalination, 2012, 293, 38-45.	4.0	37
72	Characteristics of algogenic organic matter generated under different nutrient conditions and subsequent impact on microfiltration membrane fouling. Desalination, 2012, 293, 104-111.	4.0	55

HUAQIANG CHU

#	Article	IF	CITATIONS
73	Characteristics of the Bio-enhanced powder activated carbon dynamic membrane reactor for municipal wastewater treatment. , $2011, , .$		0
74	Evaluation of humic acid removal by a flat submerged membrane photoreactor. Science Bulletin, 2011, 56, 3437-3444.	1.7	15
75	Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination, 2011, 272, 90-97.	4.0	148
76	Characteristics of the biodiatomite dynamic membrane (cake layer) for municipal wastewater treatment. Desalination, 2010, 250, 544-547.	4.0	18
77	Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. Water Research, 2010, 44, 1573-1579.	5.3	73
78	Biological Denitrification Using Corncobs as a Carbon Source and Biofilm Carrier. Water Environment Research, 2009, 81, 242-247.	1.3	52
79	Characteristics of bio-diatomite dynamic membrane process for municipal wastewater treatment. Journal of Membrane Science, 2008, 325, 271-276.	4.1	63
80	Characterizing dissolved organic matter fouling of nanofiltration membranes and evaluating effects of naproxen retention. Desalination and Water Treatment, 0, , 1-13.	1.0	1
81	Ultrafiltration of distinct natural waters: correlation of fouling resistances with water constituents. , 0, 68, 40-48.		2
82	Cellulose triacetate (CTA)-based forward osmosis membranes for water purification: optimization of dope solution composition and preparation conditions. , 0, 106, 11-20.		1