Mâ€%Jabir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/489326/publications.pdf

Version: 2024-02-01

		933447	1125743
17	359	10	13
papers	citations	h-index	g-index
17	17	17	317
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Experimental Shot-by-Shot Estimation of Quantum Measurement Confidence. Physical Review Letters, 2022, 128, 040404.	7.8	5
2	Energy and bandwidth efficiency optimization of quantum-enabled optical communication channels. Npj Quantum Information, 2022, 8, .	6.7	4
3	Practical quantum-enhanced receivers for classical communication. AVS Quantum Science, 2021, 3, .	4.9	22
4	Time-Resolving Quantum Measurement Enables Energy-Efficient, Large-Alphabet Communication. PRX Quantum, 2020, $1, \dots$	9.2	19
5	Experimental demonstration of time resolving quantum receiver for bandwidth and power efficient communications. , 2020, , .		3
6	Experimental demonstration of the near-quantum optimal receiver. OSA Continuum, 2020, 3, 3324.	1.8	10
7	Controlling the bi-photon orbital angular momentum eigenmodes using asymmetric pump vortex beam. Journal of Optics (United Kingdom), 2019, 21, 055201.	2.2	2
8	Enhancing the number of bi-photon orbital angular momentum modes using asymmetric vortex beam. , 2018, , .		0
9	Robust, high brightness, degenerate entangled photon source at room temperature. Scientific Reports, 2017, 7, 12613.	3.3	26
10	Direct transfer of classical non-separable states into hybrid entangled two photon states. Scientific Reports, 2017, 7, 7331.	3.3	22
11	Nonlinear interaction of oppositely charged vortices generating hollow Gaussian beams. , 2017, , .		O
12	Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum. Scientific Reports, 2016, 6, 32464.	3.3	46
13	Generation of "perfect―vortex of variable size and its effect in angular spectrum of the down-converted photons. Scientific Reports, 2016, 6, 21877.	3.3	82
14	Efficient nonlinear generation of high power, higher order, ultrafast "perfect―vortices in green. Optics Letters, 2016, 41, 1348.	3.3	38
15	Generation of variable sized "perfect―vortex and its effect in parametric down conversion process. , 2016, , .		0
16	High-power, high-repetition-rate, Yb-fiber laser based femtosecond source at 355  nm. Optics Letters, 2015, 40, 4269.	3.3	38
17	Frequency-doubling characteristics of high-power, ultrafast vortex beams. Optics Letters, 2015, 40, 2614.	3.3	42