Andrew M Mullis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys. Journal of Applied Physics, 1997, 82, 3783-3790.	2.5	130
2	Estimation of Cooling Rates During Close-Coupled Gas Atomization Using Secondary Dendrite Arm Spacing Measurement. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 992-999.	2.1	84
3	A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification. Journal of Computational Physics, 2007, 225, 1271-1287.	3.8	78
4	Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts. Acta Materialia, 2002, 50, 3743-3755.	7.9	68
5	Evidence for an extensive, undercooling-mediated transition in growth orientation, and novel dendritic seaweed microstructures in Cu–8.9wt.% Ni. Acta Materialia, 2014, 66, 378-387.	7.9	60
6	Mechanism selection for spontaneous grain refinement in undercooled metallic melts. Acta Materialia, 2014, 77, 76-84.	7.9	57
7	Title is missing!. Journal of Materials Science, 2000, 35, 1365-1373.	3.7	53
8	Experimental Evidence for Dendrite Tip Splitting in Deeply Undercooled, Ultrahigh Purity Cu. Physical Review Letters, 2002, 89, 215502.	7.8	45
9	The mechanism for spontaneous grain refinement in undercooled pure Cu melts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 479-484.	5.6	39
10	Microstructure evolution and mechanical properties of drop-tube processed, rapidly solidified grey cast iron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 143-150.	5.6	39
11	The role of silica precipitation kinetics in determining the rate of quartz pressure solution. Journal of Geophysical Research, 1991, 96, 10007-10013.	3.3	35
12	Disorder trapping during the solidification of βNi3Ge from its deeply undercooled melt. Journal of Materials Science, 2012, 47, 2411-2420.	3.7	35
13	Solute trapping and the effects of anti-trapping currents on phase-field models of coupled thermo-solutal solidification. Journal of Crystal Growth, 2010, 312, 1891-1897.	1.5	34
14	The effect of experimental variables on the levels of melt undercooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 485-487.	5.6	33
15	The formation of regular αNi-γ(Ni31Si12) eutectic structures from undercooled Ni–25 at.% Si melts. Intermetallics, 2012, 22, 55-61.	3.9	33
16	Deformation of dendrites by fluid flow during rapid solidification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 245-249.	5.6	32
17	Quantitative phase-field modeling of solidification at high Lewis number. Physical Review E, 2009, 79, 030601.	2.1	32
18	Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts. Applied Physics Letters, 2013, 102, .	3.3	31

#	Article	IF	CITATIONS
19	On the origin of anomalous eutectic growth from undercooled melts: Why re-melting is not a plausible explanation. Acta Materialia, 2018, 145, 186-195.	7.9	30
20	Rapid solidification within the framework of a hyperbolic conduction model. International Journal of Heat and Mass Transfer, 1997, 40, 4085-4094.	4.8	29
21	Dynamics of core–shell particle formation in drop-tube processed metastable monotectic alloys. Acta Materialia, 2020, 188, 591-598.	7.9	28
22	Effect of rapid solidification on the microstructure and microhardness of BS1452 grade 250 hypoeutectic grey cast iron. Journal of Alloys and Compounds, 2017, 707, 347-350.	5.5	27
23	Rapid solidification morphologies in Ni 3 Ge: Spherulites, dendrites and dense-branched fractal structures. Intermetallics, 2016, 76, 70-77.	3.9	26
24	Metastable monotectic phase separation in Co–Cu alloys. Journal of Materials Science, 2018, 53, 11749-11764.	3.7	26
25	Quantification of mesh induced anisotropy effects in the phase-field method. Computational Materials Science, 2006, 36, 345-353.	3.0	25
26	A numerical model for porosity modification at a sandstone-mudstone boundary by quartz pressure dissolution and diffusive mass transfer. Sedimentology, 1992, 39, 99-107.	3.1	24
27	Determination of the rate-limiting mechanism for quartz pressure dissolution. Geochimica Et Cosmochimica Acta, 1993, 57, 1499-1503.	3.9	24
28	Numerical and Experimental Investigations of the Effect of Melt Delivery Nozzle Design on the Open- to Closed-Wake Transition in Closed-Coupled Gas Atomization. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1990-2004.	2.1	24
29	Numerical and experimental modelling of back stream flow during close-coupled gas atomization. Computers and Fluids, 2013, 88, 1-10.	2.5	23
30	Prediction of the operating point of dendrites growing under coupled thermosolutal control at high growth velocity. Physical Review E, 2011, 83, 061601.	2.1	22
31	Grain refinement and growth instability in undercooled alloys at low undercooling. Journal of Applied Physics, 1998, 84, 4905-4910.	2.5	21
32	The mechanisms for spontaneous grain refinement in undercooled Cu–O and Cu–Sn melts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 262-266.	5.6	21
33	A study of kinetically limited dendritic growth at high undercooling using phase-field techniques. Acta Materialia, 2003, 51, 1959-1969.	7.9	18
34	The solidification of undercooled melts via twinned dendritic growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3211-3220.	2.2	18
35	Disorder-order morphologies in drop-tube processed Ni 3 Ge: Dendritic and seaweed growth. Journal of Alloys and Compounds, 2017, 707, 327-331.	5.5	17
36	Solidification morphology and phase selection in drop-tube processed Ni–Fe–Si intermetallics. Intermetallics, 2015, 60, 33-44.	3.9	15

#	Article	IF	CITATIONS
37	Microstructural Evolution and Phase Formation in Rapidly Solidified Ni-25.3ÂAt.ÂPct Si Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4705-4715.	2.2	14
38	Spontaneous deterministic side-branching behavior in phase-field simulations of equiaxed dendritic growth. Journal of Applied Physics, 2015, 117, 114305.	2.5	13
39	Simulations of three-dimensional dendritic growth using a coupled thermo-solutal phase-field model. Applied Physics Letters, 2015, 107, 053108.	3.3	13
40	Natural convection in porous, permeable media: sheets, wedges and lenses. Marine and Petroleum Geology, 1995, 12, 17-25.	3.3	12
41	The effects of fluid flow on secondary arm coarsening during dendritic solidification. Journal of Materials Science, 2003, 38, 2517-2523.	3.7	12
42	The Role of Recrystallization in Spontaneous Grain Refinement of Rapidly Solidified Ni3Ge. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5424-5431.	2.2	12
43	Lamella structure formation in drop-tube processed Ni–25.3at.% Si alloy. Journal of Alloys and Compounds, 2014, 615, S599-S601.	5.5	11
44	Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space. Jom, 2017, 69, 1303-1310.	1.9	11
45	Rapid solidification and a finite velocity for the propagation of heat. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 28-32.	5.6	10
46	Effect of the ratio of solid to liquid conductivity on the stability parameter of dendrites within a phase-field model of solidification. Physical Review E, 2003, 68, 011602.	2.1	10
47	Evidence for an extended transition in growth orientation and novel dendritic seaweed structures in undercooled Cu–8.9wt%Ni. Journal of Alloys and Compounds, 2014, 615, S612-S615.	5.5	10
48	Spontaneous grain refinement in alloy systems at low undercooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 267-271.	5.6	9
49	A mechanism for the equalisation of primary spacing during cellular and dendritic growth. Journal of Materials Science, 2001, 36, 865-869.	3.7	9
50	Morphology of Spherulites in Rapidly Solidified Ni3Ge Droplets. Crystals, 2017, 7, 100.	2.2	9
51	Relationship between cooling rate and SDAS in liquid phase separated metastable Cu–Co alloys. Journal of Alloys and Compounds, 2021, 883, 160823.	5.5	9
52	A numerical model for the calculation of the growth velocity of nonisothermal parabolic dendrites. Journal of Applied Physics, 1995, 78, 4137-4143.	2.5	8
53	Effect of cooling rate on the microstructure of rapidly solidified SiGe. Materials Characterization, 2019, 154, 377-385.	4.4	8
54	On the Fully Implicit Solution of a Phase-Field Model for Binary Alloy Solidification in Three Dimensions. Advances in Applied Mathematics and Mechanics, 2012, 4, 665-684.	1.2	8

#	Article	IF	CITATIONS
55	Semi-solid processing of the analogue casting system NH4Cl-H2O. Scripta Materialia, 1998, 39, 147-152.	5.2	7
56	A free boundary model for shape preserving dendritic growth at high undercooling. Journal of Applied Physics, 1996, 80, 4129-4136.	2.5	6
57	The Origins of Spontaneous Grain Refinement in Deeply Undercooled Metallic Melts. Metals, 2014, 4, 155-167.	2.3	6
58	Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe. Journal of Materials Science and Technology, 2022, 104, 41-51.	10.7	6
59	A model for spontaneous grain refinement in alloy systems at low undercooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 804-808.	5.6	5
60	Phase Field Analysis of Eutectic Breakdown. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1426-1432.	2.2	5
61	High speed imaging and Fourier analysis of the melt plume during close coupled gas atomisation. Powder Metallurgy, 2009, 52, 205-212.	1.7	5
62	Log-Normal Melt Pulsation in Close-Coupled Gas Atomization. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 789-793.	2.1	5
63	Determination of the Origin of Anomalous Eutectic Structures from <i>In Situ</i> Observation of Recalescence Behaviour. Materials Science Forum, 2014, 790-791, 349-354.	0.3	5
64	Structure and phase-composition of Ti-doped gas atomized Raney-type Ni catalyst precursor alloys. Intermetallics, 2015, 67, 63-68.	3.9	5
65	Effect of cooling rate and chromium doping on the microstructure of Al-25 at.% Ni Raney type alloy. Journal of Alloys and Compounds, 2018, 744, 801-808.	5.5	5
66	Existence of seaweed structures in rapidly solidified Ni3Ge intermetallic. Journal of Alloys and Compounds, 2019, 801, 640-644.	5.5	4
67	Evidence for dendritic fragmentation in as-solidified samples of deeply undercooled melts. Journal of Crystal Growth, 2020, 529, 125276.	1.5	4
68	An investigation of the depth of excavation and thickness of basalt fill for the lunar mascon basins. Geophysical Journal International, 1992, 109, 233-239.	2.4	3
69	An analytical geometrical model for secondary dendrite arm detachment. Scripta Materialia, 2006, 54, 795-799.	5.2	3
70	Phase-field modelling of rapid solidification in alloy systems: Spontaneous grain refinement effects. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012109.	0.6	3
71	Towards a Three-Dimensional Phase-Field Model of Dendritic Solidification with Physically Realistic Interface Width. Transactions of the Indian Institute of Metals, 2012, 65, 617-621.	1.5	3
72	Non-Equilibrium Processing of Ni-Si Alloys at High Undercooling and High Cooling Rates. Materials Science Forum, 2014, 790-791, 22-27.	0.3	3

#	Article	IF	CITATIONS
73	Deterministic side-branching during thermal dendritic growth. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012071.	0.6	3
74	Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques. IOP Conference Series: Materials Science and Engineering, 2016, 117, 012053.	0.6	3
75	A novel route to the coupling of molecular dynamics and phase-field simulations of crystal growth. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012032.	0.6	3
76	Depth of basalt fill and transient crater geometry for the Imbrium mascon basin. Geophysical Journal International, 1991, 105, 777-781.	2.4	2
77	A Mechanism For the Generation of the Lunar-Mare Basalts. Geophysical Journal International, 1993, 114, 196-208.	2.4	2
78	The Effects of Fluid Flow During Rapid Dendritic Solidification. Advanced Engineering Materials, 2000, 2, 597-600.	3.5	2
79	An extension to the Wheeler phase-field model to allow decoupling of the capillary and kinetic anisotropies. European Physical Journal B, 2004, 41, 377-382.	1.5	2
80	Mechanically Deformed Primary Dendritic Structures Observed During the Solidification of Undercooled Melts. , 2005, , 175-184.		2
81	A Phase-Field Model for the Diffusive Melting of Isolated Dendritic Fragments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3097-3102.	2.2	2
82	An adaptive mesh method for phase-field simulation of alloy solidification in three dimensions. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012068.	0.6	2
83	Order-disorder morphologies in rapidly solidified ε/ε′-Ni5Ge3 intermetallic. Journal of Alloys and Compounds, 2018, 739, 160-163.	5.5	2
84	THE PHYSICAL MECHANISM FORMELT PULSATION DURING CLOSE-COUPLED ATOMIZATION. Atomization and Sprays, 2019, 29, 143-159.	0.8	2
85	Mechanical behaviour of rapidly solidified copper: Effects of undercooling and strain rate. Materials Science and Technology, 2020, 36, 202-209.	1.6	2
86	Spatially Resolved Velocity Mapping of the Melt Plume During High-Pressure Gas Atomization of Liquid Metals. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1973-1988.	2.1	2
87	Morphology of Order-Disorder Structures in Rapidly Solidified L12 Intermetallics. Minerals, Metals and Materials Series, 2017, , 729-736.	0.4	2
88	Towards a Physically Consistent Phase-Field Model for Alloy Solidification. Metals, 2022, 12, 272.	2.3	2
89	A Model for the Anomalous Velocity-Undercooling Behaviour of Levitated Al-Ni Alloys On-board the International Space Station. Microgravity Science and Technology, 2021, 33, 1.	1.4	2
90	A new approach to multi-phase field for the solidification of alloys. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012099.	0.6	1

#	Article	IF	CITATIONS
91	Towards a 3-Dimensional Phase-Field Model of Non-Isothermal Alloy Solidification. Materials Science Forum, 0, 783-786, 2166-2171.	0.3	1
92	CFD Modelling of High Pressure Gas Atomization of Liquid Metals. Minerals, Metals and Materials Series, 2018, , 77-84.	0.4	1
93	Direct observation of dendrite fragmentation in the solidification of undercooled melts. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012020.	0.6	1
94	Solidification transformations in liquid phase separated metastable monotectic Cu-50 at. % Co alloy. Canadian Journal of Chemistry, 2021, 99, 831-836.	1.1	1
95	Phase-Field Modelling of Intermetallic Solidification. Minerals, Metals and Materials Series, 2018, , 587-596.	0.4	1
96	Mechanical Properties of Rapidly Solidified Ni5Ge3 Intermetallic. Minerals, Metals and Materials Series, 2018, , 705-711.	0.4	1
97	Partitionless solidification and anomalous triradiate crystal formation in drop-tube processed Al-3.9Âwt%Fe alloys. Materials Today Communications, 2022, 31, 103274.	1.9	1
98	A Phase Field Model for Grain Refinement in Deeply Undercooled Metallic Melts. Materials Research Society Symposia Proceedings, 2001, 677, 7151.	0.1	0
99	Particle Dynamic Simulation of Semi-Solid Metal Rheology. Materials Research Society Symposia Proceedings, 2001, 677, 7181.	0.1	0
100	A Numerical Model for Porosity Modification at a Sandstone–Mudstone Boundary by Quartz Pressure Dissolution and Diffusive Mass Transfer. , 0, , 365-373.		0
101	The prediction of tip radius during rapid dendritic growth under coupled thermo-solutal control: What value σ. Transactions of the Indian Institute of Metals, 2009, 62, 309-313.	1.5	Ο
102	Operating point selection for dendritic growth during rapid solidification. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012076.	0.6	0
103	Thermo-Solutal Modelling of Microstructure Formation during Multiphase Alloy Solidification - a New Approach. Materials Science Forum, 0, 790-791, 103-108.	0.3	0
104	Effect of Cooling Rate on Drop-Tube Processed Commercial Grey Cast Iron. , 2015, , .		0
105	The origins of spontaneous grain refinement in deeply undercooled metallic melts. IOP Conference Series: Materials Science and Engineering, 2016, 117, 012054.	0.6	0
106	Development of an Anti-Trapping Current for Phase Field Models Using Arbitrary CALPHAD Thermodynamics. Materials Science Forum, 2018, 941, 2337-2342.	0.3	0
107	Simulation of Intermetallic Solidification Using Phase-Field Techniques. Transactions of the Indian Institute of Metals, 2018, 71, 2617-2622.	1.5	0
108	Microstructure Characterization of Ni-75 at.% Al Raney Type Alloy as a Result of Cooling Rate and Chromium Doping. MRS Advances, 2019, 4, 1441-1447.	0.9	0

#	Article	IF	CITATIONS
109	Order–Disorder Morphologies in Rapidly Solidified Ni3Ge Intermetallic. Jom, 2019, 71, 2728-2733.	1.9	0
110	Dendritic Growth of Rapid-Solidified Eutectic High-Entropy Alloy. Materials Science Forum, 0, 1035, 46-50.	0.3	0
111	The Development of Plate and Lath Morphology in Ni5Ge3. Physics of Metals and Metallography, 0, , 1.	1.0	0
112	Presence of Î-and ε crystal structures in rapidly solidified intermetallic compound Ni5Ge3. Journal of Alloys and Compounds, 2021, 887, 161465.	5.5	0
113	Phase Transformation, Microstructural Evolution and Property Modification in Rapidly Solidified Grey Cast Iron. Minerals, Metals and Materials Series, 2017, , 719-727.	0.4	0
114	Mechanical Properties of Rapidly Solidified Ni ₃ Ge and Ni ₅ Ge ₃ Intermetallic Compounds. Journal of Nanoscience and Nanotechnology, 2020, 20, 4591-4596.	0.9	0
115	Thermal transitions in metastable Cu â \in " 68.5 at. % Co alloy Canadian Journal of Chemistry, 0, , .	1.1	Ο