
Rui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Resolâ€Assisted Cationic Coordinative Coâ€assembly Approach to Mesoporous ABO ₃ Perovskite Oxides with Rich Oxygen Vacancy for Enhanced Hydrogenation of Furfural to Furfuryl Alcohol. Angewandte Chemie - International Edition, 2021, 60, 4774-4781.	13.8	79
2	Rutheniumâ€Nanoparticleâ€Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Voidâ€Confinement Effect. Angewandte Chemie - International Edition, 2021, 60, 20786-20794.	13.8	75
3	Metalâ€Catalyzed Hydrogenation of Biomassâ€Derived Furfural: Particle Size Effects and Regulation Strategies. ChemSusChem, 2020, 13, 5185-5198.	6.8	50
4	Metal-Loaded Hollow Carbon Nanostructures as Nanoreactors: Microenvironment Effects and Prospects for Biomass Hydrogenation Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 2990-3010.	6.7	36
5	Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts, 2020, 10, 1006.	3.5	33
6	A Resolâ€Assisted Cationic Coordinative Coâ€assembly Approach to Mesoporous ABO ₃ Perovskite Oxides with Rich Oxygen Vacancy for Enhanced Hydrogenation of Furfural to Furfuryl Alcohol. Angewandte Chemie, 2021, 133, 4824-4831.	2.0	30
7	Taming the butterfly effect: modulating catalyst nanostructures for better selectivity control of the catalytic hydrogenation of biomass-derived furan platform chemicals. Catalysis Science and Technology, 2021, 11, 7785-7806.	4.1	17
8	Alloyâ€Driven Efficient Electrocatalytic Oxidation of Biomassâ€Derived 5â€Hydroxymethylfurfural towards 2,5â€Furandicarboxylic Acid: A Review. ChemSusChem, 2022, 15, .	6.8	14
9	Pretreatment of Corn Stover with Diluted Nitric Acid for the Enhancement of Acidogenic Fermentation. Energy & Fuels, 2018, 32, 425-430.	5.1	13
10	Ultrafine Ruthenium Clusters Shellâ€Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironmentâ€Modulated Furfural Tandem Hydrogenation. Small, 2022, 18, .	10.0	13
11	Layered double hydroxideâ€derived bimetallic Ni–Cu catalysts prompted the efficient conversion of γâ€valerolactone to 2â€methyltetrahydrofuran. ChemCatChem, 0, , .	3.7	8
12	Rutheniumâ€Nanoparticleâ€Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Voidâ€Confinement Effect. Angewandte Chemie, 2021, 133, 20954-20962.	2.0	5
13	Frontispiece: Rutheniumâ€Nanoparticle‣oaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void onfinement Effect. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
14	Frontispiz: Rutheniumâ€Nanoparticle‣oaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void onfinement Effect. Angewandte Chemie, 2021, 133, .	2.0	0