Farah Aini Abdullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892794/publications.pdf

Version: 2024-02-01

567281 610901 59 636 15 24 citations h-index g-index papers 59 59 59 329 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	New approach of $(\langle i\rangle G\langle i\rangle \hat{a} \in 2/\langle i\rangle G\langle i\rangle)$ -expansion method and new approach of generalized $(\langle i\rangle G\langle i\rangle \hat{a} \in 2/\langle i\rangle G\langle i\rangle)$ -expansion method for nonlinear evolution equation. AIP Advances, 2013, 3, .	1.3	77
2	Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge. Chaos, Solitons and Fractals, 2018, 109, 1-13.	5.1	66
3	New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method. Journal of Applied Mathematics, 2012, 2012, 1-14.	0.9	62
4	Generalized and Improved (G′/G)-Expansion Method for (3+1)-Dimensional Modified KdV-Zakharov-Kuznetsev Equation. PLoS ONE, 2013, 8, e64618.	2.5	49
5	The -Expansion Method for Abundant Traveling Wave Solutions of Caudrey-Dodd-Gibbon Equation. Mathematical Problems in Engineering, 2011, 2011, 1-11.	1.1	34
6	New generalized and improved ($G\hat{a}\in^2/G$)-expansion method for nonlinear evolution equations in mathematical physics. Journal of the Egyptian Mathematical Society, 2014, 22, 390-395.	1.2	28
7	Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation. Symmetry, 2020, 12, 691.	2.2	24
8	Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population. Advances in Difference Equations, 2020, 2020, .	3.5	23
9	The Basic (<i>G'/G</i>)-Expansion Method for the Fourth Order Boussinesq Equation. Applied Mathematics, 2012, 03, 1144-1152.	0.4	22
10	An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation. Symmetry, 2020, 12, 1437.	2.2	21
11	Stage Structure and Refuge Effects in the Dynamical Analysis of a Fractional Order Rosenzweig-MacArthur Prey-Predator Model. Progress in Fractional Differentiation and Applications, 2019, 5, 49-64.	0.6	21
12	Extended generalized Riccati equation mapping method for the fifth-order Sawada-Kotera equation. AIP Advances, 2013, 3, .	1.3	19
13	An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors. Mathematics, 2021, 9, 327.	2.2	19
14	Some New Traveling Wave Solutions of the Nonlinear Reaction Diffusion Equation by Using the Improved (<mml:math) (xmlns:mml="http://www.w3.org/1998/Mat Method. Mathematical Problems in Engineering, 2012, 2012, 1-17.</td><td>th/MathMl</td><td>_" 0="" 10="" 222="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><mml:mrov< td=""></mml:mrov<></mml:math)>		
15	Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation. Advances in Difference Equations, 2017, 2017, .	3.5	18
16	The Improved mml="http://www.w3.org/1998/Math/MathML" id="M1"> aemml:mrow>aemml:mrow>aemml:mrow>aemml:mrow>aemml:mo>aemml	10>gmml:r	ni>G
17	(2+1)-Dimensional Modified Zakharov-Kuznetsov Equation. Journal of Applied Mathematics, 2012, 2012, theomml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1<td>1><td>nrow><mm< td=""></mm<></td></td></mml:mn></mml:mrow></mml:mrow></mml:mrow>	1> <td>nrow><mm< td=""></mm<></td>	nrow> <mm< td=""></mm<>
18	Equation, Journal of Applied Mathematics, 2012, 2012, 1-18. Crank-Nicolson finite difference method for two-dimensional fractional sub-diffusion equation. Journal of Interpolation and Approximation in Scientific Computing, 2017, 2017, 18-29.	0.3	11

#	Article	IF	CITATIONS
19	Abundant traveling wave solutions of the compound KdV-Burgers equation via the improved ($<$ i > G < /i > 6 < /i > G < /i > G < /i >)-expansion method. AIP Advances, 2012, 2, .	1.3	10
20	A mathematical model of malaria and the effectiveness of drugs. Applied Mathematical Sciences, 0, 7, 3079-3095.	0.1	8
21	Modeling and Optimal Control on the Spread of Hantavirus Infection. Mathematics, 2019, 7, 1192.	2.2	7
22	Dynamical Analysis of a Fractional-Order Hantavirus Infection Model. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 171-181.	1.0	7
23	New Generalized ($\langle i \rangle G \langle i \rangle \hat{a} \in ^2 \langle i \rangle G \langle i \rangle$)-expansion Method to the Zhiber-Shabat Equation and Liouville Equations. Journal of Physics: Conference Series, 2017, 890, 012018.	0.4	6
24	Travelling wave solutions for fractional Boussinesq equation using modified (Gâ \in ^M /G) expansion method. AIP Conference Proceedings, 2018, , .	0.4	6
25	Modified implicit difference method for one-dimensional fractional wave equation. AIP Conference Proceedings, 2019, , .	0.4	6
26	Dynamical analysis of a fractional order eco-epidemiological model with nonlinear incidence rate and prey refuge. Journal of Applied Mathematics and Computing, 2021, 65, 623-650.	2.5	6
27	New Approach of (C'/G)-expansion Method for RLW Equation. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7, 4864-4871.	0.1	5
28	Further extension of the generalized and improved ($\langle i \rangle G \langle i \rangle \hat{a} \in ^2 \langle i \rangle G \langle i \rangle$)-expansion method for nonlinear evolution equation. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2016, 19, 52-58.	1.0	5
29	Explicit Saul'yev finite difference approximation for two-dimensional fractional sub-diffusion equation. AIP Conference Proceedings, 2018, , .	0.4	5
30	Global stability of a fractional order eco-epidemiological system with infected prey. International Journal of Mathematical Modelling and Numerical Optimisation, $2021,11,53.$	0.2	5
31	Differential equations to calculate the ionicity factor of hexagonal structure semiconductors. Superlattices and Microstructures, 2013, 53, 24-30.	3.1	4
32	The Improved (G ['] /G)-Expansion Method to the (3+1)-Dimensional Kadomstev-Petviashvili Equation. American Journal of Applied Mathematics and Statistics, 2013, 1, 64-70.	9.8	3
33	Modeling of Structural Properties of Hexagonal Semiconductors. Procedia Engineering, 2013, 53, 707-709.	1.2	2
34	Optimal control and sensitivity analysis of SIV→HIV dynamics with effects of infected immigrants in subâ€Saharan Africa. Mathematical Methods in the Applied Sciences, 2019, 42, 1729-1744.	2.3	2
35	Analysis of a Tuberculosis Infection Model considering the Influence of Saturated Recovery (Treatment). Complexity, 2021, 2021, 1-16.	1.6	2
36	Dynamical behavior of a fractional-order preyâ \in "predator model with infection and harvesting. Journal of Applied Mathematics and Computing, 0, , 1.	2.5	2

#	Article	IF	Citations
37	Interaction of two pulsating solitons with a discrete time separation in complex cubic-quintic Ginzburg-Landau equation. , 2014 , , .		1
38	Optimal control of HIV/AIDS dynamic: Education and treatment. , 2014, , .		1
39	Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling. AIP Conference Proceedings, 2015, , .	0.4	1
40	Global stability of a fractional order eco-epidemiological system with infected prey. International Journal of Mathematical Modelling and Numerical Optimisation, 2021, 11, 53.	0.2	1
41	Bifurcation Analysis of a Tuberculosis Model with the Risk of Re-infection. Springer Proceedings in Mathematics and Statistics, 2021 , $197-213$.	0.2	1
42	Dynamical behavior of a fractional-order Hantavirus infection model incorporating harvesting. AEJ - Alexandria Engineering Journal, 2022, 61, 11301-11312.	6.4	1
43	Numerical experiments on one-dimensional nonlinear Schrol dinger equation., 2012,,.		O
44	The stability of colorectal cancer mathematical models. , 2013, , .		0
45	Numerical methods for Competitive Hunters Model. , 2013, , .		O
46	Breathing solitons for the one-dimensional nonlinear cubic-quintic complex Ginzburg-Landau equation (cqCGLE). , 2014, , .		0
47	Some new solutions of the (1+1)-dimensional PDE via the improved (Gâ \in 2/G)-expansion method. , 2014, , .		O
48	Backward bifurcation and optimal control of Plasmodium Knowlesi malaria. , 2014, , .		0
49	Creeping solitons and Hartman-Grobman theorem. , 2014, , .		O
50	Modeling of the Electronic Properties of Hexagonal Semiconductors. Advanced Materials Research, 0, 925, 364-368.	0.3	0
51	A model for HIV/AIDS pandemic with optimal control. AIP Conference Proceedings, 2015, 1660, 050007.	0.4	O
52	Control of Plasmodium knowlesi malaria. AIP Conference Proceedings, 2015, , .	0.4	0
53	Dynamical behavior of the random field on the pulsating and snaking solitons in cubic-quintic complex Ginzburg-Landau equation. AIP Conference Proceedings, 2017, , .	0.4	0
54	Optimal control strategies for dengue dynamics. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	CITATIONS
55	Dynamical analysis of pertussis with maternally derived immunity. AIP Conference Proceedings, 2020, , .	0.4	0
56	Deterministic model of tuberculosis infection in the presence of educational counselling, treatment and vaccination. AIP Conference Proceedings, 2020, , .	0.4	0
57	Mathematical Model of Dengue Virus with Predator-Prey Interactions. Sains Malaysiana, 2020, 49, 1191-1200.	0.5	O
58	Dynamical Analysis on the Transmission of Pertussis with Maternally Derived Immunity. Journal of Mathematics and Statistics, 2020, 16, 104-112.	0.2	0
59	Numerical Approximations based on Sextic B-spline Functions for Solving Forth-Order Singular Problems. International Journal of Computer Mathematics, 0, , 1-21.	1.8	0