
Dmitry A Stetsenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Peptideâ~'Oligonucleotide Conjugates with Single and Multiple Peptides Attached to 2â€~Aldehydes through Thiazolidine, Oxime, and Hydrazine Linkages. Bioconjugate Chemistry, 2002, 13, 822-830.	1.8	117
2	Efficient Conjugation of Peptides to Oligonucleotides by "Native Ligation― Journal of Organic Chemistry, 2000, 65, 4900-4908.	1.7	99
3	DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opinion on Biological Therapy, 2015, 15, 689-711.	1.4	91
4	Use of Carbonyl Group Additionâ´'Elimination Reactions for Synthesis of Nucleic Acid Conjugates. Bioconjugate Chemistry, 2005, 16, 471-489.	1.8	82
5	Novel uridin-2a€ ² -yl carbamates: synthesis, incorporation into oligodeoxyribonucleotides, and remarkable fluorescence properties of 2â€ ² -pyren-1-ylmethylcarbamateElectronic supplementary information (ESI) available: Additional experimental data for compounds 3, 5 and 6. See http://www.rsc.org/suppdata/p1/b11b111434b/. Journal of the Chemical Society, Perkin Transactions 1,	1.3	76
6	Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1229-1234.	3.3	74
7	1-(Phenylethynyl)pyrene and 9,10-Bis(phenylethynyl)anthracene, Useful Fluorescent Dyes for DNA Labeling: Excimer Formation and Energy Transfer. European Journal of Organic Chemistry, 2004, 2004, 1298-1307.	1.2	71
8	Pyrenemethyl ara-Uridine-2′-carbamate: A Strong Interstrand Excimer in the Major Groove of a DNA Duplex. ChemBioChem, 2003, 4, 841-847.	1.3	61
9	A Convenient Solid-Phase Method for Synthesis of 3â€~-Conjugates of Oligonucleotides. Bioconjugate Chemistry, 2001, 12, 576-586.	1.8	56
10	Identification of new differentiation inducing factors from Dictyostelium discoideum. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 754-761.	1.1	55
11	New TFA-Free Cleavage and Final Deprotection in Fmoc Solid-Phase Peptide Synthesis: Dilute HCl in Fluoro Alcohol. Organic Letters, 2012, 14, 6346-6349.	2.4	43
12	New approach to solid phase synthesis of polyamide nucleic acids analogues (PNA) and PNA-DNA conjugates. Tetrahedron Letters, 1996, 37, 3571-3574.	0.7	41
13	Total Stepwise Solid-Phase Synthesis of Oligonucleotide-(3â€ [~] →N)-Peptide Conjugates. Organic Letters, 2002, 4, 3259-3262.	2.4	41
14	Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules, 2021, 26, 5420.	1.7	40
15	A Structure-Activity Study of the Inhibition of HIV-1 Tat-DependentTrans-Activation by Mixmer 2′-O-Methyl Oligoribonucleotides Containing Locked Nucleic Acid (LNA),α-L-LNA, or 2′-Thio-LNA Residues. Oligonucleotides, 2003, 13, 435-453.	2.7	37
16	Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32370-32379.	3.3	34
17	A New and Efficient Method for Synthesis of 5′-Conjugates of Oligonucleotides through Amide-Bond Formation on Solid Phase. Helvetica Chimica Acta, 2002, 85, 2409-2416.	1.0	32
18	Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opinion on Drug Delivery, 2017, 14, 1077-1089.	2.4	30

#	Article	IF	CITATIONS
19	New oligodeoxynucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl) Tj ETQq1 1 0.7	784314 rgBT	0verlock
20	Oligonucleotides with 2′-O-carboxymethyl group: synthesis and 2′-conjugation via amide bond formation on solid phase. Organic and Biomolecular Chemistry, 2004, 2, 2793-2797.	1.5	26
21	Synthesis and evaluation of aryliden- and hetarylidenfuranone derivatives of usnic acid as highly potent Tdp1 inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 4470-4480.	1.4	26
22	Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: Isolation and properties. Biochemical and Biophysical Research Communications, 2019, 513, 807-811.	1.0	25
23	Effect of Temperature and Ionic Strength on the Dissociation Kinetics and Lifetime of PNAâ^'DNA Triplexesâ€. Biochemistry, 2000, 39, 11742-11747.	1.2	24
24	Conformation and Self-Association of Peptide Amphiphiles Based on the KTTKS Collagen Sequence. Langmuir, 2012, 28, 12209-12215.	1.6	24
25	(R)-2,4-Dihydroxybutyramideseco-Pseudonucleosides:  New Versatile Homochiral Synthons for Synthesis of Modified Oligonucleotides. Organic Letters, 2002, 4, 4607-4610.	2.4	23
26	Synthesis of Modified Nucleotide Building Blocks Containing Electrophilic Groups in the 2′-Position. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1693-1707.	0.4	22
27	Design of a New Fluorescent Oligonucleotide-Based Assay for a Highly Specific Real-Time Detection of Apurinic/Apyrimidinic Site Cleavage by Tyrosyl-DNA Phosphodiesterase 1. Bioconjugate Chemistry, 2015, 26, 2046-2053.	1.8	22
28	New oligodeoxyribonucleotide derivatives bearing internucleotide N-tosyl phosphoramidate groups: Synthesis and complementary binding to DNA and RNA. Russian Journal of Bioorganic Chemistry, 2017, 43, 38-42.	0.3	22
29	Synthesis of oligonucleotide 2′-conjugates via amide bond formation in solution. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 801-804.	1.0	18
30	Mesyl Phosphoramidate Oligonucleotides as Potential Splice-Switching Agents: Impact of Backbone Structure on Activity and Intracellular Localization. Nucleic Acid Therapeutics, 2021, 31, 190-200.	2.0	18
31	Peptide Conjugates of Oligonucleotides As Enhanced Antisense Agents. Molecular Biology, 2000, 34, 852-859.	0.4	17
32	Synthesis of DNA conjugates by solid-phase fragment condensation via aldehyde–nucleophile coupling. Tetrahedron Letters, 2005, 46, 3191-3195.	0.7	17
33	New Phosphoramidite Reagents for the Synthesis of Oligonucleotides Containing a Cysteine Residue Useful in Peptide Conjugation. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1751-1764.	0.4	14
34	Detection of point mutations using pyrene-labeled DNA probes. Russian Chemical Bulletin, 2004, 53, 463-470.	0.4	14
35	Reversible thermal transition of polydiacetylene based on KTTKS collagen sequence. Chemical Communications, 2012, 48, 9774.	2.2	14
36	A New Antisense Phosphoryl Guanidine Oligo-2′-O-Methylribonucleotide Penetrates Into Intracellular Mycobacteria and Suppresses Target Gene Expression. Frontiers in Pharmacology, 2019, 10, 1049.	1.6	14

DMITRY A STETSENKO

#	Article	IF	CITATIONS
37	New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. International Journal of Molecular Sciences, 2021, 22, 11336.	1.8	14
38	Oligonucleotides containing 2′-O-[2-(2,3-dihydroxypropyl)amino-2-oxoethyl]uridine as suitable precursors of 2′-aldehyde oligonucleotides for chemoselective ligation. Bioorganic and Medicinal Chemistry, 2005, 13, 4912-4920.	1.4	13
39	ANTIVIRAL ACTIVITY OF STERIC-BLOCK OLIGONUCLEOTIDES TARGETING THE HIV-1 TRANS-ACTIVATION RESPONSE AND PACKAGING SIGNAL STEM-LOOP RNAS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 393-396.	0.4	13
40	Neutral and Negatively Charged Phosphate Modifications Altering Thermal Stability, Kinetics of Formation and Monovalent Ion Dependence of DNA Gâ€Quadruplexes. Chemistry - an Asian Journal, 2019, 14, 1212-1220.	1.7	13
41	Efficient Functionalization of Oligonucleotides by New Achiral Nonnucleosidic Monomers. Organic Letters, 2014, 16, 2842-2845.	2.4	12
42	Conjugates of phosphorylated zalcitabine and lamivudine with SiO2 nanoparticles: Synthesis by CuAAC click chemistry and preliminary assessment of anti-HIV and antiproliferative activity. Bioorganic and Medicinal Chemistry, 2017, 25, 1696-1702.	1.4	12
43	Novel Lipid-Oligonucleotide Conjugates Containing Long-Chain Sulfonyl Phosphoramidate Groups: Synthesis and Biological Properties. Applied Sciences (Switzerland), 2021, 11, 1174.	1.3	12
44	Novel spermine–Amino acid conjugates and basic tripeptides enhance cleavage of the hairpin ribozyme at low magnesium ion concentration. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 3007-3010.	1.0	11
45	Analysis of new charge-neutral DNA/RNA analogues phosphoryl guanidine oligonucleotides (PGO) by gel electrophoresis. Analytical Biochemistry, 2018, 555, 9-11.	1.1	11
46	Synthesis of 2′-Modified Oligonucleotides Containing Aldehyde or Ethylenediamine Groups. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1383-1385.	0.4	10
47	Phosphoramidites and solid supports based on N-substituted 2,4-dihydroxybutyramides: universal reagents for synthesis of modified oligonucleotides. Tetrahedron, 2006, 62, 6762-6773.	1.0	10
48	Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells. Molecular Therapy - Nucleic Acids, 2022, 27, 211-226.	2.3	10
49	Synthesis of 2′-hydrazine oligonucleotides and their efficient conjugation with aldehydes and 1,3-diketones. Tetrahedron Letters, 2006, 47, 5515-5518.	0.7	9
50	New oligonucleotide derivatives as unreactive substrate analogues and potential inhibitors of human apurinic/apyrimidinic endonuclease APE1. Molecular BioSystems, 2016, 12, 67-75.	2.9	9
51	Silencing of <i>BCR/ABL</i> Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates. Nucleic Acid Therapeutics, 2017, 27, 168-175.	2.0	9
52	A New Phosphoramidite Reagent for the Incorporation of Diazaphenoxazinone Nucleoside With Enhanced Base-Pairing Properties into Oligodeoxynucleotides. Nucleosides & Nucleotides, 1997, 16, 1837-1846.	0.5	8
53	A facile route to 3′-modified oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1181-1184.	1.0	8
54	1,2-Diol and Hydrazide Phosphoramidites for Solid-Phase Synthesis and Chemoselective Ligation of 2′-Modified Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1375-1378.	0.4	8

DMITRY A STETSENKO

#	Article	IF	CITATIONS
55	Chemical Methods for Peptide–Oligonucleotide Conjugate Synthesis. , 2005, 288, 205-224.		8
56	The Importance of Phosphates for DNA Gâ€Quadruplex Formation: Evaluation of Zwitterionic Gâ€Rich Oligodeoxynucleotides. ChemBioChem, 2020, 21, 2455-2466.	1.3	8
57	Experimental Comparison of the <i>In Vivo</i> Efficacy of Two Novel Anticancer Therapies. Anticancer Research, 2021, 41, 3371-3387.	0.5	8
58	2′-BIS-PYRENE MODIFIED OLIGONUCLEOTIDES: SENSITIVE FLUORESCENT PROBES OF NUCLEIC ACIDS STRUCTURE. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 729-734.	0.4	7
59	A NEW "NATIVE LIGATION―PROCEDURE FOR PEPTIDE-OLIGONUCLEOTIDE CONJUGATION. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 801-804.	0.4	6
60	Total Stepwise Solid-Phase Peptide-Oligonucleotide Conjugate Synthesis on Macroporous Polystyrene. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1379-1382.	0.4	6
61	Oligonucleotide Functionalization by a Novel Alkyne-Modified Nonnucleosidic Reagent Obtained by Versatile Building Block Chemistry. Nucleosides, Nucleotides and Nucleic Acids, 2013, 32, 306-319.	0.4	6
62	Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine oligonucleotides in MDCK cells infected with H5N1 bird flu virus. Molecular Biology, 2017, 51, 633-638.	0.4	6
63	Pre-steady state kinetics of DNA binding and abasic site hydrolysis by tyrosyl-DNA phosphodiesterase 1. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2314-2327.	2.0	6
64	Synthesis of peptide-oligonucleotide conjugates: Application to basic peptides. Nucleic Acids Symposium Series, 2001, 1, 153-154.	0.3	5
65	Efficient conjugation and preferential DNA binding of oligonucleotides containing 2′-O-(2-oxoethyl)arabinouridine. Tetrahedron Letters, 2004, 45, 7327-7330.	0.7	5
66	A new simple and convenient method for preparation of oligonucleotides containing a pyrene or a cholesterol moiety. Russian Chemical Bulletin, 2015, 64, 1678-1681.	0.4	5
67	Synthesis and DNA Duplex Stabilities of Oligonucleotides Containing C-5-(3-Methoxypropynyl)-2′-deoxyuridine Residues. Nucleosides & Nucleotides, 1997, 16, 215-225.	0.5	4
68	2′-Hydrazine oligonucleotides: synthesis and efficient conjugation with aldehydes. Nucleic Acids Symposium Series, 2005, 49, 133-134.	0.3	3
69	Novel Method for the Synthesis of 2′ -Phosphorylated Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 821-825.	0.4	3
70	Removal of acid-labile protecting or anchoring groups in the presence of polyfluorinated alcohol: Application to solid-phase peptide synthesis. Russian Journal of Bioorganic Chemistry, 2016, 42, 143-152.	0.3	3
71	2′,3′-Dideoxyuridine triphosphate conjugated to SiO 2 nanoparticles: Synthesis and evaluation of antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1248-1251.	1.0	3
72	Data for isolation and properties analysis of diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide. Data in Brief, 2019, 25, 104148.	0.5	3

DMITRY A STETSENKO

#	Article	IF	CITATIONS
73	Phosphate-modified CpG oligonucleotides induce in vitro maturation of human myeloid dendritic cells. Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 24, 653-660.	0.4	3
74	Uridine 2′â€Carbamates: Facile Tools for Oligonucleotide 2′â€Functionalization. Current Protocols in Nucleic Acid Chemistry, 2003, 15, Unit 4.21.	0.5	2
75	Preparation Of 2′-Hydrazino Oligonucleotides And Their Reaction With Aldehydes And 1,3-Diketones. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 795-798.	0.4	2
76	A Convenient Solid-Phase Method for the Synthesis of Novel Oligonucleotide-Folate Conjugates. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1273-1276.	0.4	2
77	Synthesis of new non-nucleosidic ligand building blocks for solid-phase oligonucleotide assembly. Nucleic Acids Symposium Series, 2008, 52, 719-720.	0.3	2
78	DNA or RNA Oligonucleotide 2′-Hydrazides for Chemoselective Click-Type Ligation with Carbonyl Compounds. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 577-584.	0.4	2
79	Design and Properties of Ligand-Conjugated Guanine Oligonucleotides for Recovery of Mutated G-Quadruplexes. Molecules, 2018, 23, 3228.	1.7	2
80	Application of silicon dioxide nanoparticles modified with tumor-targeting ligands for cellular delivery of nucleoside triphosphate analogues. Journal of Saudi Chemical Society, 2020, 24, 98-104.	2.4	2
81	Chemical Methods for Peptide—Oligonucleotide Conjugate Synthesis. ChemInform, 2005, 36, no.	0.1	1
82	Synthesis and properties of oligodeoxyribonucleotides containing 2'-O-(2,3-dihydroxypropyl)- and 2'-O-(2-oxoethyl)arabinouridine residues. Russian Chemical Bulletin, 2005, 54, 238-246.	0.4	1
83	Synthesis of oligo-2′-O-methylribonucleotides containing α-amino acid residues in 2′-position. Russian Chemical Bulletin, 2007, 56, 806-814.	0.4	1
84	Nanorings from Concatemeric DNA: Chemical Modification Drives Nanostructure Formation. Journal of Nanoscience and Nanotechnology, 2015, 15, 4170-4177.	0.9	1
85	Fluorescent labeling of Taqman oligonucleotide probes via Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry. Russian Journal of Bioorganic Chemistry, 2017, 43, 43-49.	0.3	1
86	Nuclear delivery of oligonucleotides via nanocomposites based on TiO2 nanoparticles and polylysine. Molecular Biology, 2017, 51, 695-704.	0.4	1
87	Synthesis of 2'-modified oligonucleotides and their conjugates. , 2002, , .		1
88	Use of Carbonyl Group Addition—Elimination Reactions for Synthesis of Nucleic Acid Conjugates. ChemInform, 2005, 36, no.	0.1	0
89	Using Chemical Approaches to Understand RNA Structure and Function in Biology. Journal of Nucleic Acids, 2012, 2012, 1-2.	0.8	0
90	Data set on the synthesis and properties of 2′,3′-dideoxyuridine triphosphate conjugated to SiO2 nanoparticles. Data in Brief, 2018, 21, 540-547.	0.5	0