
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycolactone: A Polyketide Toxin from Mycobacterium ulcerans Required for Virulence. Science, 1999, 283, 854-857.	12.6	602
2	Mycobacterial lipoarabinomannan: An extraordinary lipoheteroglycan with profound physiological effects. Glycobiology, 1998, 8, 113-120.	2.5	333
3	Trafficking and Release of Mycobacterial Lipids from Infected Macrophages. Traffic, 2000, 1, 235-247.	2.7	316
4	Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nature Genetics, 2013, 45, 1190-1197.	21.4	191
5	Inositol Phosphate Capping of the Nonreducing Termini of Lipoarabinomannan from Rapidly Growing Strains of Mycobacterium. Journal of Biological Chemistry, 1995, 270, 12380-12389.	3.4	190
6	Molecular Interaction of CD1b with Lipoglycan Antigens. Immunity, 1998, 8, 331-340.	14.3	177
7	The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Current Opinion in Chemical Biology, 1997, 1, 579-588.	6.1	166
8	The Role of the embA and embB Gene Products in the Biosynthesis of the Terminal Hexaarabinofuranosyl Motif of Mycobacterium smegmatisArabinogalactan. Journal of Biological Chemistry, 2001, 276, 48854-48862.	3.4	155
9	Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from nonâ€replicating persistence. Molecular Microbiology, 2009, 72, 85-97.	2.5	141
10	Structural mapping of the glycans from the egg glycoproteins of Schistosoma mansoni and Schistosoma japonicum: identification of novel core structures and terminal sequences. Glycobiology, 1997, 7, 663-677.	2.5	136
11	Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology, 1995, 5, 117-127.	2.5	131
12	The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Molecular Microbiology, 2003, 50, 69-76.	2.5	126
13	Metabolic Profiling of Lung Granuloma in <i>Mycobacterium tuberculosis</i> Infected Guinea Pigs: Ex vivo ¹ H Magic Angle Spinning NMR Studies. Journal of Proteome Research, 2011, 10, 4186-4195.	3.7	112
14	Truncated Structural Variants of Lipoarabinomannan in Ethambutol Drug-resistant Strains of Mycobacterium smegmatis. Journal of Biological Chemistry, 1996, 271, 28682-28690.	3.4	104
15	The pimB Gene of Mycobacterium tuberculosis Encodes a Mannosyltransferase Involved in Lipoarabinomannan Biosynthesis. Journal of Biological Chemistry, 1999, 274, 31625-31631.	3.4	104
16	The Two-Domain LysX Protein of Mycobacterium tuberculosis Is Required for Production of Lysinylated Phosphatidylglycerol and Resistance to Cationic Antimicrobial Peptides. PLoS Pathogens, 2009, 5, e1000534.	4.7	97
17	Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185, 1860-1874.e12.	28.9	93
18	Biosynthesis of mycobacterial lipoarabinomannan: Role of a branching mannosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13664-13669.	7.1	91

#	Article	IF	CITATIONS
19	Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. Glycobiology, 1993, 3, 497-506.	2.5	87
20	Variation in Mannose-capped Terminal Arabinan Motifs of Lipoarabinomannans from Clinical Isolates of Mycobacterium tuberculosis and Mycobacterium avium Complex. Journal of Biological Chemistry, 2001, 276, 3863-3871.	3.4	85
21	The Identification and Location of Succinyl Residues and the Characterization of the Interior Arabinan Region Allow for a Model of the Complete Primary Structure of Mycobacterium tuberculosis Mycolyl Arabinogalactan. Journal of Biological Chemistry, 2008, 283, 12992-13000.	3.4	82
22	The Variable Surface Glycolipids of Mycobacteria: Structures, Synthesis of Epitopes, And Biological Properties. Advances in Carbohydrate Chemistry and Biochemistry, 1995, 51, 169-242.	0.9	79
23	[15] Mycobacterial glycolipids: Isolation, structures, antigenicity, and synthesis of neoantigens. Methods in Enzymology, 1989, 179, 215-242.	1.0	78
24	Characterization of Novel Macrolide Toxins, Mycolactones A and B, from a Human Pathogen,Mycobacterium ulcerans. Journal of the American Chemical Society, 1999, 121, 6092-6093.	13.7	76
25	The Carboxy Terminus of EmbC from Mycobacterium smegmatis Mediates Chain Length Extension of the Arabinan in Lipoarabinomannan. Journal of Biological Chemistry, 2006, 281, 19512-19526.	3.4	75
26	Structural characterization of glycosphingolipids from the eggs of Schistosoma mansoni and Schistosoma japonicum. Glycobiology, 1997, 7, 653-661.	2.5	74
27	5-methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis. Journal of Molecular Biology, 2002, 316, 89-100.	4.2	74
28	Lipoarabinomannan of <i>Mycobacterium</i> : Mannose capping by a multifunctional terminal mannosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17973-17977.	7.1	73
29	New Insights into the Early Steps of Phosphatidylinositol Mannoside Biosynthesis in Mycobacteria. Journal of Biological Chemistry, 2009, 284, 25687-25696.	3.4	70
30	Roles of Conserved Proline and Glycosyltransferase Motifs of EmbC in Biosynthesis of Lipoarabinomannan. Journal of Biological Chemistry, 2005, 280, 5651-5663.	3.4	68
31	Genetic Basis for the Synthesis of the Immunomodulatory Mannose Caps of Lipoarabinomannan in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2006, 281, 20027-20035.	3.4	68
32	Identification of the 5-Methylthiopentosyl Substituent inMycobacterium tuberculosis Lipoarabinomannan. Angewandte Chemie - International Edition, 2004, 43, 3918-3922.	13.8	67
33	Analysis of Antibody Responses to <i>Mycobacterium leprae</i> Phenolic Glycolipid I, Lipoarabinomannan, and Recombinant Proteins To Define Disease Subtype-Specific Antigenic Profiles in Leprosy. Vaccine Journal, 2011, 18, 260-267.	3.1	65
34	Lipids and Carbohydrates of <i>Mycobacterium tuberculosis</i> ., 0, , 285-306.		65
35	Truncated Structural Variants of Lipoarabinomannan in Mycobacterium leprae and an Ethambutol-resistant Strain of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2004, 279, 41227-41239.	3.4	64
36	AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology, 2009, 19, 1235-1247.	2.5	61

#	Article	IF	CITATIONS
37	New Insights into the Biosynthesis of Mycobacterial Lipomannan Arising from Deletion of a Conserved Gene. Journal of Biological Chemistry, 2007, 282, 27133-27140.	3.4	60
38	Identification of Mycobacterium tuberculosis Clinical Isolates with Altered Phagocytosis by Human Macrophages Due to a Truncated Lipoarabinomannan. Journal of Biological Chemistry, 2008, 283, 31417-31428.	3.4	60
39	Mycobacterial Lysocardiolipin Is Exported from Phagosomes upon Cleavage of Cardiolipin by a Macrophage-Derived Lysosomal Phospholipase A2. Journal of Immunology, 2001, 167, 2187-2192.	0.8	58
40	Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of <i>Mycobacterium tuberculosis</i> , and Complexity of Antibody Specificities toward This Antigen. Journal of Immunology, 2018, 200, 3053-3066.	0.8	58
41	Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: structural changes in the arabinan due to ethambutol treatment and gene mutation are observed. Glycobiology, 2004, 15, 139-151.	2.5	55
42	Targeting Fatty Acid Biosynthesis for the Development of Novel Chemotherapeutics against <i>Mycobacterium tuberculosis</i> : Evaluation of A-Ring-Modified Diphenyl Ethers as High-Affinity InhA Inhibitors. Antimicrobial Agents and Chemotherapy, 2007, 51, 3562-3567.	3.2	54
43	Identification and Recombinant Expression of a Mycobacterium avium Rhamnosyltransferase Gene () Tj ETQq1 1	0.78431 2.2	4 rgBT /Over
44	Chemical synthesis and seroreactivity of O-(3,6-di-O-methyl-β-d-glucopyranosyl)-(1→4)-O-(2,3-di-O-methyl-α-lrhamnopyranosyl)-(1→9)-oxynonanoyl-bo serum albumin—the leprosy-specific, natural disaccharide-octyl-neoglycoprotein. Carbohydrate Research, 1986, 156, 39-56.	vine 2.3	51
45	The Critical Role of <i>embC</i> in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2008, 190, 4335-4341.	2.2	51
46	EmbA is an essential arabinosyltransferase in Mycobacterium tuberculosis. Microbiology (United) Tj ETQq0 0 0 r	gBT /Over 1.8	lock 10 Tf 50
47	<i>Mycobacterium avium</i> Infection and Modulation of Human Macrophage Gene Expression. Journal of Immunology, 2002, 169, 6286-6297.	0.8	50
48	Altered Expression Profile of the Surface Glycopeptidolipids in Drug-resistant Clinical Isolates of Mycobacterium aviumComplex. Journal of Biological Chemistry, 1999, 274, 9778-9785.	3.4	48
49	Detection of lipoarabinomannan in urine and serum of HIV-positive and HIV-negative TB suspects using an improved capture-enzyme linked immuno absorbent assay and gas chromatography/mass spectrometry. Tuberculosis, 2018, 111, 178-187.	1.9	48
50	Metabolomic Signatures in Guinea Pigs Infected with Epidemic-Associated W-Beijing Strains of Mycobacterium tuberculosis. Journal of Proteome Research, 2012, 11, 4873-4884.	3.7	47
51	Isolation of a distinct Mycobacterium tuberculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells. Glycobiology, 2012, 22, 1118-1127.	2.5	46
52	Detection of the tuberculosis antigenic marker mannose-capped lipoarabinomannan in pretreated serum by surface-enhanced Raman scattering. Analyst, The, 2017, 142, 186-196.	3.5	44
53	Synthetic mannosides act as acceptors for mycobacterial α1-6 mannosyltransferase. Bioorganic and Medicinal Chemistry, 2001, 9, 815-824.	3.0	42
54	A bioanalytical method to determine the cell wall composition of Mycobacterium tuberculosis grown in vivo. Analytical Biochemistry, 2012, 421, 240-249.	2.4	35

#	Article	IF	CITATIONS
55	Synthesis and immunoreactivity of neoglycoproteins containing the trisaccharide unit of phenolic glycolipid I of Mycobacterium leprae. Carbohydrate Research, 1988, 183, 241-260.	2.3	34
56	A Major Cell Wall Lipopeptide of Mycobacterium avium subspecies paratuberculosis. Journal of Biological Chemistry, 2006, 281, 5209-5215.	3.4	33
57	Characterization of a Distinct Arabinofuranosyltransferase inMycobacteriumsmegmatis. Journal of the American Chemical Society, 2007, 129, 9650-9662.	13.7	33
58	Characterization of a Specific Arabinosyltransferase Activity Involved in Mycobacterial Arabinan Biosynthesis. Chemistry and Biology, 2006, 13, 787-795.	6.0	32
59	Mycobacterium avium 104 deleted of the methyltransferase D gene by allelic replacement lacks serotype-specific glycopeptidolipids and shows attenuated virulence in mice. Molecular Microbiology, 2005, 56, 1262-1273.	2.5	29
60	A Subset of Protective γ ₉ δ ₂ T Cells Is Activated by Novel Mycobacterial Glycolipid Components. Infection and Immunity, 2016, 84, 2449-2462.	2.2	27
61	Novel O-Methylated Terminal Glucuronic Acid Characterizes the Polar Glycopeptidolipids of Mycobacterium habana Strain TMC 5135. Journal of Biological Chemistry, 1996, 271, 12333-12342.	3.4	26
62	Reconstitution of Functional Mycobacterial Arabinosyltransferase AftC Proteoliposome and Assessment of Decaprenylphosphorylarabinose Analogues as Arabinofuranosyl Donors. ACS Chemical Biology, 2011, 6, 819-828.	3.4	24
63	Estimation of D-Arabinose by Gas Chromatography/Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannan in Human Urine. PLoS ONE, 2015, 10, e0144088.	2.5	23
64	Comparative Structural Study of Terminal Ends of Lipoarabinomannan from Mice Infected Lung Tissues and Urine of a Tuberculosis Positive Patient. ACS Infectious Diseases, 2020, 6, 291-301.	3.8	23
65	Synthesis of tetrasaccharides related to the antigenic determinants from the glycopeptidolipid antigens of serovars 9 and 25 in the Mycobacterium avium-M. intracellulare-M. scrofulaceum serocomplex. Carbohydrate Research, 1986, 150, 133-150.	2.3	21
66	<i>Mycobacterium avium</i> Complex Promotes Recruitment of Monocyte Hosts for HIV-1 and Bacteria. Journal of Immunology, 2002, 169, 3854-3862.	0.8	21
67	Importance of specimen pretreatment for the low-level detection of mycobacterial lipoarabinomannan in human serum. Analyst, The, 2017, 142, 177-185.	3.5	20
68	Structures of the glycopeptidolipid antigens of serovars 25and 26 of the Mycobacterium aviumserocomplex, synthesis of allyl glycosides of the outer disaccharide units and serology of the derived neoglycoproteins. Carbohydrate Research, 1992, 237, 57-77.	2.3	19
69	Lipoarabinomannan fromMycobacterium tuberculosismodulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunology and Medical Microbiology, 1994, 8, 299-305.	2.7	19
70	Transfer of the First Arabinofuranose Residue to Galactan Is Essential for <i>Mycobacterium smegmatis</i> Viability. Journal of Bacteriology, 2008, 190, 5248-5255.	2.2	19
71	Structural Analysis and Biosynthesis Gene Cluster of an Antigenic Glycopeptidolipid from <i>Mycobacterium intracellulare</i> . Journal of Bacteriology, 2008, 190, 3613-3621.	2.2	17
72	The hex-5-enose degradation: zinc dust cleavage of 6-deoxy-6-iodo-α-D-galactopyranosidic linkages in methylated di- and trisaccharides. Canadian Journal of Chemistry, 1984, 62, 2728-2735.	1.1	16

#	Article	IF	CITATIONS
73	A Single Arabinan Chain Is Attached to the Phosphatidylinositol Mannosyl Core of the Major Immunomodulatory Mycobacterial Cell Envelope Glycoconjugate, Lipoarabinomannan. Journal of Biological Chemistry, 2014, 289, 30249-30256.	3.4	16
74	Handheld Raman Spectrometer Instrumentation for Quantitative Tuberculosis Biomarker Detection: A Performance Assessment for Point-of-Need Infectious Disease Diagnostics. Applied Spectroscopy, 2018, 72, 1104-1115.	2.2	16
75	The mycobacterial acyltransferase PapA5 is required for biosynthesis of cell wall-associated phenolic glycolipids. Microbiology (United Kingdom), 2012, 158, 1379-1387.	1.8	15
76	Tuberculosis in the African continent: A comprehensive review. Pathophysiology, 2015, 22, 73-83.	2.2	15
77	Structural implications of lipoarabinomannan glycans from global clinical isolates in diagnosis of Mycobacterium tuberculosis infection. Journal of Biological Chemistry, 2021, 297, 101265.	3.4	15
78	A modified synthesis and serological evaluation of neoglycoproteins containing the natural disaccharide of PGL-I from Mycobacterium leprae. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3250-3253.	2.2	14
79	Urine lipoarabinomannan as a marker for low-risk of NTM infection in the CF airway. Journal of Cystic Fibrosis, 2020, 19, 801-807.	0.7	14
80	Urine lipoarabinomannan in HIV uninfected, smear negative, symptomatic TB patients: effective sample pretreatment for a sensitive immunoassay and mass spectrometry. Scientific Reports, 2021, 11, 2922.	3.3	14
81	Immobilization of Proteinase K for urine pretreatment to improve diagnostic accuracy of active tuberculosis. PLoS ONE, 2021, 16, e0257615.	2.5	13
82	Detection of the tuberculosis biomarker mannose-capped lipoarabinomannan in human serum: Impact of sample pretreatment with perchloric acid. Analytica Chimica Acta, 2019, 1046, 140-147.	5.4	12
83	A Simplified Serological Test for Leprosy Based on a 3,6-di-O-Methylglucose-Containing Synthetic Antigen. American Journal of Tropical Medicine and Hygiene, 1986, 35, 167-172.	1.4	12
84	Monoclonal antibodies from humans with Mycobacterium tuberculosis exposure or latent infection recognize distinct arabinomannan epitopes. Communications Biology, 2021, 4, 1181.	4.4	12
85	Development of a plate-based scintillation proximity assay for the mycobacterial AftB enzyme involved in cell wall arabinan biosynthesis. Bioorganic and Medicinal Chemistry, 2010, 18, 7121-7131.	3.0	10
86	Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Neglected Tropical Diseases, 2020, 14, e0008138.	3.0	10
87	Culturing Mycobacteria. Methods in Molecular Biology, 2021, 2314, 1-58.	0.9	10
88	Lipoglycans of Mycobacterium tuberculosis: Isolation, Purification, and Characterization. Methods in Molecular Biology, 2009, 465, 23-45.	0.9	10
89	Simple manipulation of enzyme-linked immunosorbent assay (ELISA) using an automated microfluidic interface. Analytical Methods, 2022, 14, 1774-1781.	2.7	9
90	Structural determinants in a glucose-containing lipopolysaccharide from Mycobacterium tuberculosis critical for inducing a subset of protective T cells. Journal of Biological Chemistry, 2018, 293, 9706-9717.	3.4	8

#	Article	IF	CITATIONS
91	Glycosylated components of the mycobacterial cell wall. , 2010, , 147-167.		4
92	[3] Leprosy-specific neoglycoconjugates: Synthesis and application to serodiagnosis of leprosy. Methods in Enzymology, 1994, 242, 27-37.	1.0	3
93	Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs. Tuberculosis, 2014, 94, 525-530.	1.9	3
94	Lipoarabinomannan from Mycobacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunology and Medical Microbiology, 1994, 8, 299-305.	2.7	2
95	Characterization of Dâ€arabinosyltransferase activity involved in mycobacterial arabinan biosynthesis using specific synthetic acceptors. FASEB Journal, 2006, 20, LB56.	0.5	0
96	Altered composition and functional profile of high-density lipoprotein in leprosy patients. , 2020, 14, e0008138.		0
97	Altered composition and functional profile of high-density lipoprotein in leprosy patients. , 2020, 14, e0008138.		0
98	Altered composition and functional profile of high-density lipoprotein in leprosy patients. , 2020, 14, e0008138.		0
99	Altered composition and functional profile of high-density lipoprotein in leprosy patients. , 2020, 14, e0008138.		0