
Changyou Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NIR Lightâ€Triggered Quantitative Pulsed Drug Release. Advanced Healthcare Materials, 2022, 11, e2102362.	7.6	9
2	Photoresponsive prodrugâ€dye nanoassembly for inâ€situ monitorable cancer therapy. Bioengineering and Translational Medicine, 2022, 7, .	7.1	11
3	cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance. Journal of Controlled Release, 2022, 344, 202-213.	9.9	11
4	Topical instillation of cell-penetrating peptide-conjugated melphalan blocks metastases of retinoblastoma. Biomaterials, 2022, 284, 121493.	11.4	11
5	Evaluation of CTB-sLip for Targeting Lung Metastasis of Colorectal Cancer. Pharmaceutics, 2022, 14, 868.	4.5	4
6	H ₂ Sâ€Responsive Smallâ€Molecule Nanocarriers for Drug Delivery to Colorectal Tumors. Advanced Therapeutics, 2022, 5, .	3.2	1
7	Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Advanced Drug Delivery Reviews, 2022, 187, 114362.	13.7	17
8	Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opinion on Drug Delivery, 2022, 19, 833-846.	5.0	10
9	Unraveling GLUTâ€mediated transcytosis pathway of glycosylated nanodisks. Asian Journal of Pharmaceutical Sciences, 2021, 16, 120-128.	9.1	10
10	Interplay between nanomedicine and protein corona. Journal of Materials Chemistry B, 2021, 9, 6713-6727.	5.8	21
11	Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. Journal of Controlled Release, 2021, 330, 493-501.	9.9	24
12	Deciphering Protein Corona by scFv-Based Affinity Chromatography. Nano Letters, 2021, 21, 2124-2131.	9.1	28
13	Self-Adjuvant Effect by Manipulating the Bionano Interface of Liposome-Based Nanovaccines. Nano Letters, 2021, 21, 4744-4752.	9.1	17
14	A Nanoantidote Alleviates Glioblastoma Chemotoxicity without Efficacy Compromise. Nano Letters, 2021, 21, 5158-5166.	9.1	14
15	Interrogating preclinical study of liposomes: The effect of mouse strain reexamined. Journal of Controlled Release, 2021, 334, 178-187.	9.9	10
16	Regulation of in vivo delivery of nanomedicines by herbal medicines. Advanced Drug Delivery Reviews, 2021, 174, 210-228.	13.7	19
17	Green Lightâ€Triggered Intraocular Drug Release for Intravenous Chemotherapy of Retinoblastoma. Advanced Science, 2021, 8, e2101754.	11.2	30
18	Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Advanced Drug Delivery Reviews, 2021, 178, 113964.	13.7	71

#	Article	IF	CITATIONS
19	Virusâ€mimetic systems for cancer diagnosis and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1692.	6.1	4
20	Facile Separation of PEGylated Liposomes Enabled by Anti-PEG scFv. Nano Letters, 2021, 21, 10107-10113.	9.1	12
21	Preparation of Cholera Toxin Subunit B Functionalized Nanoparticles for Targeted Therapy of Glioblastoma. Methods in Molecular Biology, 2020, 2059, 207-212.	0.9	3
22	Natural IgM dominates in vivo performance of liposomes. Journal of Controlled Release, 2020, 319, 371-381.	9.9	30
23	A Red Lightâ€Triggered Drug Release System Based on Oneâ€Photon Upconversionâ€Like Photolysis. Advanced Healthcare Materials, 2020, 9, e2001118.	7.6	20
24	Interrogation of Folic Acid-Functionalized Nanomedicines: The Regulatory Roles of Plasma Proteins Reexamined. ACS Nano, 2020, 14, 14779-14789.	14.6	63
25	Factors Influencing the Immunogenicity and Immunotoxicity of Cyclic RGD Peptide-Modified Nanodrug Delivery Systems. Molecular Pharmaceutics, 2020, 17, 3281-3290.	4.6	8
26	Arming Anti-EGFRvIII CAR-T With TGFβ Trap Improves Antitumor Efficacy in Glioma Mouse Models. Frontiers in Oncology, 2020, 10, 1117.	2.8	19
27	All-stage precisional glioma targeted therapy enabled by a well-designed D-peptide. Theranostics, 2020, 10, 4073-4087.	10.0	25
28	Brain-targeted drug delivery by manipulating protein corona functions. Nature Communications, 2019, 10, 3561.	12.8	174
29	Octopus-like Flexible Vector for Noninvasive Intraocular Delivery of Short Interfering Nucleic Acids. Nano Letters, 2019, 19, 6410-6417.	9.1	25
30	Short Peptide-Mediated Brain-Targeted Drug Delivery with Enhanced Immunocompatibility. Molecular Pharmaceutics, 2019, 16, 907-913.	4.6	26
31	Oral Delivery of Honokiol Microparticles for Nonrapid Eye Movement Sleep. Molecular Pharmaceutics, 2019, 16, 737-743.	4.6	7
32	Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomaterials Science, 2019, 7, 461-471.	5.4	115
33	Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy. Nanoscale, 2019, 11, 13069-13077.	5.6	28
34	Ligand-Modified Cell Membrane Enables the Targeted Delivery of Drug Nanocrystals to Glioma. ACS Nano, 2019, 13, 5591-5601.	14.6	238
35	Bortezomib Dendrimer Prodrugâ€Based Nanoparticle System. Advanced Functional Materials, 2019, 29, 1807941.	14.9	41
36	Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. Journal of Controlled Release, 2019, 316, 381-392.	9.9	25

#	Article	IF	CITATIONS
37	Receptor-mediated transportation through BBB. , 2019, , 105-128.		3
38	Liposomes with cyclic RGD peptide motif triggers acute immune response in mice. Journal of Controlled Release, 2019, 293, 201-214.	9.9	33
39	High-frequency, low-intensity ultrasound and microbubbles enhance nerve blockade. Journal of Controlled Release, 2018, 276, 150-156.	9.9	8
40	A novel peptide ligand RAP12 of LRP1 for glioma targeted drug delivery. Journal of Controlled Release, 2018, 279, 306-315.	9.9	54
41	A d-Peptide Ligand of Integrins for Simultaneously Targeting Angiogenic Blood Vasculature and Glioma Cells. Molecular Pharmaceutics, 2018, 15, 592-601.	4.6	14
42	Photoswitchable Ultrafast Transactivator of Transcription (TAT) Targeting Effect for Nanocarrierâ€Based Onâ€Đemand Drug Delivery. Advanced Functional Materials, 2018, 28, 1704806.	14.9	29
43	Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption. Nature Communications, 2018, 9, 2982.	12.8	107
44	Enhanced Glioblastoma Targeting Ability of Carfilzomib Enabled by a ^D A7R-Modified Lipid Nanodisk. Molecular Pharmaceutics, 2018, 15, 2437-2447.	4.6	16
45	Long-acting liposomal corneal anesthetics. Biomaterials, 2018, 181, 372-377.	11.4	25
46	Nanodisk-based glioma-targeted drug delivery enabled by a stable glycopeptide. Journal of Controlled Release, 2018, 284, 26-38.	9.9	41
47	Ultrasensitive Phototriggered Local Anesthesia. Nano Letters, 2017, 17, 660-665.	9.1	55
48	Multiply repeatable and adjustable on-demand phototriggered local anesthesia. Journal of Controlled Release, 2017, 251, 68-74.	9.9	28
49	Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. Journal of Controlled Release, 2017, 255, 132-141.	9.9	74
50	Stapled RGD Peptide Enables Glioma-Targeted Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Interfaces, 2017, 9, 17745-17756.	8.0	57
51	<scp>d</scp> -Retroenantiomer of Quorum-Sensing Peptide-Modified Polymeric Micelles for Brain Tumor-Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 25672-25682.	8.0	38
52	GRP78 enabled micelle-based glioma targeted drug delivery. Journal of Controlled Release, 2017, 255, 120-131.	9.9	52
53	Glioma-Targeted Drug Delivery Enabled by a Multifunctional Peptide. Bioconjugate Chemistry, 2017, 28, 775-781.	3.6	12
54	Enhanced Triggering of Local Anesthetic Particles by Photosensitization and Photothermal Effect Using a Common Wavelength. Nano Letters, 2017, 17, 7138-7145.	9.1	22

#	Article	IF	CITATIONS
55	A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. Journal of Controlled Release, 2017, 264, 102-111.	9.9	168
56	Cholera Toxin Subunit B Enabled Multifunctional Gliomaâ€Targeted Drug Delivery. Advanced Healthcare Materials, 2017, 6, 1700709.	7.6	27
57	Discerning the composition of penetratin for safe penetration from cornea to retina. Acta Biomaterialia, 2017, 63, 123-134.	8.3	22
58	Phototriggered Drug Delivery Using Inorganic Nanomaterials. Bioconjugate Chemistry, 2017, 28, 98-104.	3.6	54
59	Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget, 2017, 8, 66889-66900.	1.8	69
60	Core-Shell Nanostars for Multimodal Therapy and Imaging. Theranostics, 2016, 6, 2306-2313.	10.0	31
61	Dâ€Peptides as Recognition Molecules and Therapeutic Agents. Chemical Record, 2016, 16, 1772-1786.	5.8	48
62	A Supramolecular Shearâ€Thinning Antiâ€Inflammatory Steroid Hydrogel. Advanced Materials, 2016, 28, 6680-6686.	21.0	43
63	Stabilized Heptapeptide A7R for Enhanced Multifunctional Liposome-Based Tumor-Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 13232-13241.	8.0	58
64	Extended Release of Native Drug Conjugated in Polyketal Microparticles. Journal of the American Chemical Society, 2016, 138, 6127-6130.	13.7	41
65	A stabilized peptide ligand for multifunctional glioma targeted drug delivery. Journal of Controlled Release, 2016, 243, 86-98.	9.9	36
66	Liposome-Based Systemic Glioma-Targeted Drug Delivery Enabled by All- <scp>d</scp> Peptides. ACS Applied Materials & Interfaces, 2016, 8, 29977-29985.	8.0	72
67	Enhanced Precision of Nanoparticle Phototargeting in Vivo at a Safe Irradiance. Nano Letters, 2016, 16, 4516-4520.	9.1	50
68	Phototriggered Local Anesthesia. Nano Letters, 2016, 16, 177-181.	9.1	78
69	A <scp>D</scp> â€Peptide Ligand of Nicotine Acetylcholine Receptors for Brainâ€Targeted Drug Delivery. Angewandte Chemie, 2015, 127, 3066-3070.	2.0	14
70	Corneal Anesthesia With Site 1 Sodium Channel Blockers and Dexmedetomidine. , 2015, 56, 3820.		21
71	Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15719-15724.	7.1	97
72	A <scp>D</scp> â€Peptide Ligand of Nicotine Acetylcholine Receptors for Brainâ€Targeted Drug Delivery. Angewandte Chemie - International Edition, 2015, 54, 3023-3027.	13.8	141

#	Article	IF	CITATIONS
73	Rücktitelbild: AD-Peptide Ligand of Nicotine Acetylcholine Receptors for Brain-Targeted Drug Delivery (Angew. Chem. 10/2015). Angewandte Chemie, 2015, 127, 3194-3194.	2.0	0
74	Efficient Triplet–Triplet Annihilation-Based Upconversion for Nanoparticle Phototargeting. Nano Letters, 2015, 15, 6332-6338.	9.1	101
75	Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Advanced Drug Delivery Reviews, 2015, 90, 101-118.	13.7	45
76	Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. Journal of Controlled Release, 2015, 218, 13-21.	9.9	113
77	Retro-Inverso Isomer of Angiopep-2: A Stable <scp>d</scp> -Peptide Ligand Inspires Brain-Targeted Drug Delivery. Molecular Pharmaceutics, 2014, 11, 3261-3268.	4.6	93
78	Total chemical synthesis of dengue 2 virus capsid protein via native chemical ligation: Role of the conserved salt-bridge. Bioorganic and Medicinal Chemistry, 2013, 21, 3443-3449.	3.0	8
79	Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53–MDM2 interaction. Bioorganic and Medicinal Chemistry, 2013, 21, 4045-4050.	3.0	43
80	The Blood-Brain/Tumor Barriers: Challenges and Chances for Malignant Gliomas Targeted Drug Delivery. Current Pharmaceutical Biotechnology, 2012, 13, 2380-2387.	1.6	116
81	Interrogation of MDM2 Phosphorylation in p53 Activation Using Native Chemical Ligation: The Functional Role of Ser17 Phosphorylation in MDM2 Reexamined. Journal of the American Chemical Society, 2012, 134, 6855-6864.	13.7	35
82	An Ultrahigh Affinity <scp>d</scp> -Peptide Antagonist Of MDM2. Journal of Medicinal Chemistry, 2012, 55, 6237-6241.	6.4	71
83	Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. Journal of Controlled Release, 2012, 160, 630-636.	9.9	102
84	Cyclic RGD–Polyethylene Glycol–Polyethylenimine for Intracranial Glioblastomaâ€Targeted Gene Delivery. Chemistry - an Asian Journal, 2012, 7, 91-96.	3.3	52
85	Cyclic RGD-poly(ethylene glycol)-polyethyleneimine is more suitable for glioblastoma targeting gene transferin vivo. Journal of Drug Targeting, 2011, 19, 573-581.	4.4	21
86	Micelleâ€Based Brainâ€Targeted Drug Delivery Enabled by a Nicotine Acetylcholine Receptor Ligand. Angewandte Chemie - International Edition, 2011, 50, 5482-5485.	13.8	124
87	Peptide Activators of the p53 Tumor Suppressor. Current Pharmaceutical Design, 2011, 17, 603-609.	1.9	20
88	Targeted brain delivery of itraconazole via RVG29 anchored nanoparticles. Journal of Drug Targeting, 2011, 19, 228-234.	4.4	45
89	LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. International Journal of Pharmaceutics, 2010, 385, 150-156.	5.2	142
90	Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Journal of Controlled Release, 2010, 143, 136-142.	9.9	336

#	Article	IF	CITATIONS
91	Loop 2 of Ophiophagus hannah Toxin b Binds with Neuronal Nicotinic Acetylcholine Receptors and Enhances Intracranial Drug Delivery. Molecular Pharmaceutics, 2010, 7, 1940-1947.	4.6	55
92	D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14321-14326.	7.1	191
93	9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: Preparation and evaluation in vitro. International Journal of Pharmaceutics, 2009, 372, 125-131.	5.2	96