
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892366/publications.pdf Version: 2024-02-01



YHAN WANC

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. Journal of Colloid and Interface Science, 2022, 605, 779-789.                                              | 5.0  | 63        |
| 2  | Recent advances of metal telluride anodes for high-performance lithium/sodium–ion batteries.<br>Materials Horizons, 2022, 9, 524-546.                                                                                              | 6.4  | 32        |
| 3  | Surfaceâ€Structured Cocatalyst Foils Unraveling a Pathway to Highâ€Performance Solar Water Splitting.<br>Advanced Energy Materials, 2022, 12, 2102752.                                                                             | 10.2 | 11        |
| 4  | Unconventional direct synthesis of Ni <sub>3</sub> N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy and Environmental Science, 2022, 15, 185-195.                                                         | 15.6 | 44        |
| 5  | Electronic Structure Engineering of Singleâ€Atom Ru Sites via Co–N4 Sites for Bifunctional<br>pHâ€Universal Water Splitting. Advanced Materials, 2022, 34, e2110103.                                                               | 11.1 | 199       |
| 6  | A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chemical Engineering Journal, 2022, 438, 135561.                                           | 6.6  | 21        |
| 7  | Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density.<br>Energy Storage Materials, 2022, 49, 299-338.                                                                                   | 9.5  | 30        |
| 8  | Rhodium promoted heteropolyacid catalysts for low temperature methanol carbonylation. Catalysis<br>Science and Technology, 2022, 12, 3886-3897.                                                                                    | 2.1  | 1         |
| 9  | Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. Journal of Energy Chemistry, 2021, 57, 516-542.                                                                                      | 7.1  | 48        |
| 10 | One-step hydrothermal synthesis of telluride molybdenum/reduced graphene oxide with Schottky<br>barrier for fabricating label-free photoelectrochemical profenofos aptasensor. Chemical Engineering<br>Journal, 2021, 407, 127213. | 6.6  | 33        |
| 11 | Nanoscale niobium oxides anode for electrochemical lithium and sodium storage: a review of recent improvements. Journal of Nanostructure in Chemistry, 2021, 11, 33-68.                                                            | 5.3  | 25        |
| 12 | Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.                                                           | 18.7 | 140       |
| 13 | Highly catalytically active CeO <sub>2â~'x</sub> -based heterojunction nanostructures with mixed micro/meso-porous architectures. Nanoscale, 2021, 13, 6764-6771.                                                                  | 2.8  | 16        |
| 14 | Engineering the Activity and Stability of MOFâ€Nanocomposites for Efficient Water Oxidation. Advanced<br>Energy Materials, 2021, 11, 2003759.                                                                                      | 10.2 | 108       |
| 15 | Oxygen Evolution Reaction: Engineering the Activity and Stability of MOFâ€Nanocomposites for Efficient<br>Water Oxidation (Adv. Energy Mater. 16/2021). Advanced Energy Materials, 2021, 11, 2170063.                              | 10.2 | 3         |
| 16 | In Situ Reconstruction of Vâ€Đoped Ni <sub>2</sub> P Preâ€Catalysts with Tunable Electronic Structures<br>for Water Oxidation. Advanced Functional Materials, 2021, 31, 2100614.                                                   | 7.8  | 129       |
| 17 | Nanoscale Phase Engineering in Two-Dimensional Niobium Pentoxide Anodes toward Excellent<br>Electrochemical Lithium Storage. ACS Applied Energy Materials, 2021, 4, 4551-4560.                                                     | 2.5  | 15        |
| 18 | Direct Solar Hydrogen Generation at 20% Efficiency Using Lowâ€Cost Materials. Advanced Energy<br>Materials, 2021, 11, 2101053.                                                                                                     | 10.2 | 35        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nitrogen Vacancy Induced Coordinative Reconstruction of Singleâ€Atom Ni Catalyst for Efficient<br>Electrochemical CO <sub>2</sub> Reduction. Advanced Functional Materials, 2021, 31, 2107072.                   | 7.8 | 89        |
| 20 | Impact of Surface Defects on LaNiO <sub>3</sub> Perovskite Electrocatalysts for the Oxygen<br>Evolution Reaction. Chemistry - A European Journal, 2021, 27, 14418-14426.                                         | 1.7 | 19        |
| 21 | Target Screening of Hydroxylated and Nitrated Polycyclic Aromatic Hydrocarbons in Surface Water<br>Using Orbitrap High–Resolution Mass Spectrometry in a Lake in Hebei, China. Separations, 2021, 8, 247.        | 1.1 | 2         |
| 22 | Shock Exfoliation of Graphene Fluoride in Microwave. Small, 2020, 16, e1903397.                                                                                                                                  | 5.2 | 20        |
| 23 | Photocatalytic Degradation of Dye Pollutant Over FeTPP/NaY Zeolite Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1621-1628.                                           | 1.9 | 11        |
| 24 | Sprayâ€flame synthesis of La(Fe, Co)O <sub>3</sub> nanoâ€perovskites from metal nitrates. AICHE Journal,<br>2020, 66, e16748.                                                                                    | 1.8 | 41        |
| 25 | Interfacial Engineering FeOOH/CoO Nanoneedle Array for Efficient Overall Water Splitting Driven by<br>Solar Energy. Chemistry - A European Journal, 2020, 26, 4120-4127.                                         | 1.7 | 24        |
| 26 | Organosiloxane tunability in mesoporous organosilica and punctuated Pd nanoparticles growth;<br>theory and experiment. Microporous and Mesoporous Materials, 2020, 293, 109832.                                  | 2.2 | 59        |
| 27 | Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Materials Horizons, 2020, 7, 1014-1029.                                                    | 6.4 | 134       |
| 28 | 2-Methylimidazole directed ambient synthesis of zinc-cobalt LDH nanosheets for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 565, 351-359.                                | 5.0 | 34        |
| 29 | Graphitic carbon nitride with different dimensionalities for energy and environmental applications.<br>Nano Research, 2020, 13, 18-37.                                                                           | 5.8 | 214       |
| 30 | Design and operando/in situ characterization of preciousâ€metalâ€free electrocatalysts for alkaline<br>water splitting. , 2020, 2, 582-613.                                                                      |     | 105       |
| 31 | Tuning the surface energy density of non-stoichiometric LaCoO3 perovskite for enhanced water oxidation. Journal of Power Sources, 2020, 478, 228748.                                                             | 4.0 | 33        |
| 32 | Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis.<br>Inorganic Chemistry, 2020, 59, 12437-12444.                                                              | 1.9 | 40        |
| 33 | The NH x Group Induced Formation of 3D α o(OH) 2 Curly Nanosheet Aggregates as Efficient Oxygen<br>Evolution Electrocatalysts. Small, 2020, 16, 2001973.                                                        | 5.2 | 22        |
| 34 | Vertical Growth of Porous Perovskite Nanoarrays on Nickel Foam for Efficient Oxygen Evolution<br>Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 4863-4870.                                        | 3.2 | 38        |
| 35 | Nickel induced electronic structural regulation of cobalt hydroxide for enhanced water oxidation.<br>Journal of Materials Chemistry A, 2020, 8, 6699-6708.                                                       | 5.2 | 29        |
| 36 | Engineering Surface Structure and Defect Chemistry of Nanoscale Cubic<br>Co <sub>3</sub> O <sub>4</sub> Crystallites for Enhanced Lithium and Sodium Storage. ACS Applied<br>Nano Materials, 2020, 3, 3892-3903. | 2.4 | 32        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction.<br>International Journal of Hydrogen Energy, 2020, 45, 21512-21522.                                                                                             | 3.8  | 40        |
| 38 | Microwave-Induced Plasma Synthesis of Defect-Rich, Highly Ordered Porous Phosphorus-Doped<br>Cobalt Oxides for Overall Water Electrolysis. Journal of Physical Chemistry C, 2020, 124, 9971-9978.                                                              | 1.5  | 26        |
| 39 | Boosting CO <sub>2</sub> adsorption and selectivity in metal–organic frameworks of MIL-96(Al)<br><i>via</i> second metal Ca coordination. RSC Advances, 2020, 10, 8130-8139.                                                                                   | 1.7  | 36        |
| 40 | Assembly of cerium-based coordination polymer into variant polycrystalline 2D–3D CeO2â^'x<br>nanostructures. Journal of Materials Chemistry A, 2020, 8, 4753-4763.                                                                                             | 5.2  | 20        |
| 41 | Inducing synergy in bimetallic RhNi catalysts for CO2 methanation by galvanic replacement. Applied<br>Catalysis B: Environmental, 2020, 277, 119029.                                                                                                           | 10.8 | 41        |
| 42 | Tuning the Selectivity of LaNiO3 Perovskites for CO2 Hydrogenation through Potassium Substitution.<br>Catalysts, 2020, 10, 409.                                                                                                                                | 1.6  | 20        |
| 43 | Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chemical Research in Chinese<br>Universities, 2020, 36, 360-365.                                                                                                                            | 1.3  | 12        |
| 44 | Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond<br>Water of Hebei Province. International Journal of Environmental Research and Public Health, 2019, 16,<br>4481.                                               | 1.2  | 6         |
| 45 | Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs. Chemical Engineering Journal, 2019, 357, 159-168.                                                                                         | 6.6  | 245       |
| 46 | Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chemical Communications, 2018, 54, 6484-6502.                                                                                                                              | 2.2  | 104       |
| 47 | In Situ Exsolution of Bimetallic Rh–Ni Nanoalloys: a Highly Efficient Catalyst for CO <sub>2</sub><br>Methanation. ACS Applied Materials & Interfaces, 2018, 10, 16352-16357.                                                                                  | 4.0  | 89        |
| 48 | Hierarchically Porous Networkâ€Like Ni/Co <sub>3</sub> O <sub>4</sub> : Noble Metalâ€Free Catalysts for<br>Carbon Dioxide Methanation. Advanced Sustainable Systems, 2018, 2, 1700119.                                                                         | 2.7  | 30        |
| 49 | One-pot synthesis of S-doped Fe2O3/C magnetic nanocomposite as an adsorbent for anionic dye removal: equilibrium and kinetic studies. Journal of Nanostructure in Chemistry, 2018, 8, 23-32.                                                                   | 5.3  | 35        |
| 50 | Mesoporous CoO-supported palladium nanocatalysts with high performance for <i>o</i> -xylene combustion. Catalysis Science and Technology, 2018, 8, 806-816.                                                                                                    | 2.1  | 47        |
| 51 | NH2-coordinately immobilized tris(8-quinolinolato)iron onto the silica coated magnetite<br>nanoparticle: Fe3O4@SiO2-FeQ3 as a selective Fenton-like catalyst for clean oxidation of sulfides.<br>Journal of Colloid and Interface Science, 2018, 511, 447-455. | 5.0  | 63        |
| 52 | Correlating morphology and doping effects with the carbon monoxide catalytic activity of Zn doped<br>CeO2 nanocrystals. Catalysis Science and Technology, 2018, 8, 134-138.                                                                                    | 2.1  | 19        |
| 53 | The evaluation of autothermal methane reforming for hydrogen production over Ni/CeO2 catalysts.<br>International Journal of Hydrogen Energy, 2018, 43, 22340-22346.                                                                                            | 3.8  | 37        |
| 54 | Single Atom and Nanoclustered Pt Catalysts for Selective CO <sub>2</sub> Reduction. ACS Applied<br>Energy Materials, 2018, 1, 6781-6789.                                                                                                                       | 2.5  | 104       |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Simultaneous Determination of 32 Polycyclic Aromatic Hydrocarbon Derivatives and Parent PAHs<br>Using Gas Chromatography–Mass Spectrometry: Application in Groundwater Screening. Bulletin of<br>Environmental Contamination and Toxicology, 2018, 101, 664-671. | 1.3 | 8         |
| 56 | Highly Efficient and Selective Cu/MnO <sub><i>x</i></sub> Catalysts for Carbon Dioxide Reduction.<br>ACS Applied Energy Materials, 2018, 1, 3035-3041.                                                                                                           | 2.5 | 13        |
| 57 | Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts. ACS<br>Applied Materials & Interfaces, 2018, 10, 24963-24968.                                                                                                          | 4.0 | 45        |
| 58 | Development of a mobile groundwater desalination system for communities in rural India. Water Research, 2018, 144, 642-655.                                                                                                                                      | 5.3 | 22        |
| 59 | Self-assembly of flower-like LaNiAlO3-supported nickel catalysts for CO methanation. Catalysis Communications, 2018, 115, 40-44.                                                                                                                                 | 1.6 | 6         |
| 60 | Thermocatalytic conversion of methane to highly pure hydrogen over Ni–Cu/MgO·Al2O3 catalysts:<br>Influence of noble metals (Pt and Pd) on the catalytic activity and stability. Energy Conversion and<br>Management, 2018, 166, 268-280.                         | 4.4 | 50        |
| 61 | Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water.<br>Journal of Environmental Chemical Engineering, 2018, 6, 5269-5286.                                                                                               | 3.3 | 189       |
| 62 | HMTA-assisted formation of hierarchical Co-based materials built by low-dimensional substructures as water oxidation electrocatalysts. CrystEngComm, 2018, 20, 5249-5255.                                                                                        | 1.3 | 12        |
| 63 | Templateâ€free Scalable Synthesis of Flowerâ€like<br>Co <sub>3â€<i>x</i></sub> Mn <sub><i>x</i></sub> O <sub>4</sub> Spinel Catalysts for Toluene Oxidation.<br>ChemCatChem, 2018, 10, 3429-3434.                                                                | 1.8 | 125       |
| 64 | Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel<br>with high surface area using a novel modified sol-gel method. Advanced Powder Technology, 2017, 28,<br>1249-1257.                                                | 2.0 | 82        |
| 65 | Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review.<br>Journal of Materials Chemistry A, 2017, 5, 8825-8846.                                                                                                         | 5.2 | 263       |
| 66 | The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts. Nature Communications, 2017, 8, 15553.                                                                                               | 5.8 | 65        |
| 67 | Design and synthesis of CeO2 nanowire/MnO2 nanosheet heterogeneous structure for enhanced catalytic properties. Materials Today Communications, 2017, 11, 103-111.                                                                                               | 0.9 | 36        |
| 68 | Effect of substitution by Ni in MgAl2O4 spinel for biogas dry reforming. International Journal of<br>Hydrogen Energy, 2017, 42, 24159-24168.                                                                                                                     | 3.8 | 67        |
| 69 | Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: a review. Journal of Chemical Technology and Biotechnology, 2017, 92, 463-478.                                                   | 1.6 | 42        |
| 70 | Porous Perovskite Materials in Catalysis. Synthesis and Catalysis Open Access, 2017, 02, .                                                                                                                                                                       | 0.4 | 0         |
| 71 | High Performance Au–Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite<br>Perovskite Catalyst for Methane Combustion. ACS Catalysis, 2016, 6, 6935-6947.                                                                                        | 5.5 | 158       |
| 72 | Biogas Reforming for Hydrogen Production: A New Path to Highâ€Performance Nickel Catalysts<br>Supported on Magnesium Aluminate Spinel. ChemCatChem, 2016, 8, 3600-3610.                                                                                          | 1.8 | 29        |

| #  | Article                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Meso-Molding Three-Dimensional Macroporous Perovskites: A New Approach to Generate<br>High-Performance Nanohybrid Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 2457-2463.                                                                                                                      | 4.0  | 64        |
| 74 | Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Research, 2015, 69, 210-222.                                                                                                                                                        | 5.3  | 105       |
| 75 | Iron and phosphorus speciation in Fe-conditioned membrane bioreactor activated sludge. Water Research, 2015, 76, 213-226.                                                                                                                                                                                 | 5.3  | 53        |
| 76 | Numerical simulation of bubble induced shear inÂmembrane bioreactors: Effects of mixed liquor<br>rheology and membrane configuration. Water Research, 2015, 75, 131-145.                                                                                                                                  | 5.3  | 52        |
| 77 | Removal of phosphorus from wastewaters using ferrous salts – A pilot scale membrane bioreactor<br>study. Water Research, 2014, 57, 140-150.                                                                                                                                                               | 5.3  | 54        |
| 78 | Three-Dimensionally Ordered Macroporous La <sub>0.6</sub> Sr <sub>0.4</sub> MnO <sub>3</sub><br>Supported Ag Nanoparticles for the Combustion of Methane. Journal of Physical Chemistry C, 2014, 118,<br>14913-14928.                                                                                     | 1.5  | 89        |
| 79 | Controlled Generation of Uniform Spherical LaMnO <sub>3</sub> , LaCoO <sub>3</sub> ,<br>Mn <sub>2</sub> O <sub>3</sub> , and Co <sub>3</sub> O <sub>4</sub> Nanoparticles and Their High<br>Catalytic Performance for Carbon Monoxide and Toluene Oxidation. Inorganic Chemistry, 2013, 52,<br>8665-8676. | 1.9  | 124       |
| 80 | Three-dimensionally ordered macroporous InVO4: Fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chemical Engineering Journal, 2013, 226, 87-94.                                                                                                  | 6.6  | 73        |
| 81 | Porous FeOx/BiVO4–δS0.08: Highly efficient photocatalysts for the degradation of Methylene Blue<br>under visible-light illumination. Journal of Environmental Sciences, 2013, 25, 2138-2149.                                                                                                              | 3.2  | 25        |
| 82 | Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307, 327-339.                                                                                                                                 | 3.1  | 206       |
| 83 | Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane. Chemical Communications, 2013, 49, 10748.                                                          | 2.2  | 49        |
| 84 | Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene.<br>Chemical Engineering Journal, 2013, 228, 965-975.                                                                                                                                                         | 6.6  | 114       |
| 85 | Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Journal of Catalysis, 2013, 305, 146-153.                                                                                                                                                           | 3.1  | 146       |
| 86 | Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chinese Journal of Catalysis, 2013, 34, 2223-2229.                                                                                                                                                                          | 6.9  | 48        |
| 87 | 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sciences, 2013, 24, 62-70.                                                                                                                                                   | 1.5  | 48        |
| 88 | In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM<br>La0.6Sr0.4CoO3 for toluene combustion. Applied Catalysis A: General, 2013, 458, 11-20.                                                                                                                           | 2.2  | 67        |
| 89 | PMMA-templating generation and high catalytic performance of chain-like ordered macroporous<br>LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Applied<br>Catalysis B: Environmental, 2013, 140-141, 317-326.                                                       | 10.8 | 74        |
| 90 | In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of<br>MnOx/3DOM LaMnO3 for the combustion of toluene and methanol. Applied Catalysis B: Environmental,<br>2013, 140-141, 493-505.                                                                             | 10.8 | 130       |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: Highly active nanocatalysts for the combustion of toluene. Applied Catalysis B: Environmental, 2013, 129, 539-548.                                         | 10.8 | 47        |
| 92 | A comparative study of bulk and 3DOM-structured Co3O4, Eu0.6Sr0.4FeO3, and Co3O4/Eu0.6Sr0.4FeO3:<br>Preparation, characterization, and catalytic activities for toluene combustion. Applied Catalysis A:<br>General, 2012, 447-448, 41-48. | 2.2  | 47        |