
## Sujitra J Pookpanratana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892205/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Organic single crystals of charge-transfer complexes: model systems for the study of donor/acceptor interactions. Materials Horizons, 2022, 9, 271-280.                                           | 6.4 | 10        |
| 2  | Imaging and measuring the electronic properties of epitaxial graphene with a photoemission electron microscope. Journal of Applied Physics, 2022, 131, .                                          | 1.1 | 3         |
| 3  | Commissioning and Calibration of a Photoemission Electron Microscope. Microscopy and Microanalysis, 2021, 27, 634-634.                                                                            | 0.2 | Ο         |
| 4  | Alternatives to aluminum gates for silicon quantum devices: Defects and strain. Journal of Applied<br>Physics, 2021, 130, 115102.                                                                 | 1.1 | 3         |
| 5  | Nonvolatile memory based on redox-active ruthenium molecular monolayers. Applied Physics Letters, 2019, 115, 162102.                                                                              | 1.5 | 6         |
| 6  | Contrasting Transport and Electrostatic Properties of Selectively Fluorinated Alkanethiol<br>Monolayers with Embedded Dipoles. Journal of Physical Chemistry C, 2018, 122, 4881-4890.             | 1.5 | 13        |
| 7  | Contact and Noncontact Measurement of Electronic Transport in Individual 2D SnS Colloidal<br>Semiconductor Nanocrystals. ACS Nano, 2018, 12, 10045-10060.                                         | 7.3 | 19        |
| 8  | Electronic properties and structure of single crystal perylene. Organic Electronics, 2018, 61, 157-163.                                                                                           | 1.4 | 15        |
| 9  | Reply to Comment on Polymorphism in the 1:1 Chargeâ€Transfer Complex DBTTFâ€TCNQ and Its Effects on Optical and Electronic Properties. Advanced Electronic Materials, 2017, 3, 1600521.           | 2.6 | 2         |
| 10 | Organic Electronics: The Influence of Isomer Purity on Trap States and Performance of Organic<br>Thinâ€Film Transistors (Adv. Electron. Mater. 1/2017). Advanced Electronic Materials, 2017, 3, . | 2.6 | 0         |
| 11 | Zn–Se–Cd–S Interlayer Formation at the CdS/Cu <sub>2</sub> ZnSnSe <sub>4</sub> Thin-Film Solar<br>Cell Interface. ACS Energy Letters, 2017, 2, 1632-1640.                                         | 8.8 | 31        |
| 12 | The Influence of Isomer Purity on Trap States and Performance of Organic Thinâ€Film Transistors.<br>Advanced Electronic Materials, 2017, 3, 1600294.                                              | 2.6 | 37        |
| 13 | Chemical-doping-driven crossover from graphene to "ordinary metal―in epitaxial graphene grown on<br>SiC. Nanoscale, 2017, 9, 11537-11544.                                                         | 2.8 | 16        |
| 14 | (Invited) Interface Engineering for Nanoelectronics. ECS Transactions, 2017, 80, 119-131.                                                                                                         | 0.3 | 1         |
| 15 | Site- and Symmetry-Resolved Resonant X-ray Emission Study of a Highly Ordered PTCDA Thin Film.<br>Journal of Physical Chemistry C, 2016, 120, 8607-8615.                                          | 1.5 | 1         |
| 16 | Polymorphism in the 1:1 Chargeâ€Transfer Complex DBTTF–TCNQ and Its Effects on Optical and Electronic Properties. Advanced Electronic Materials, 2016, 2, 1600203.                                | 2.6 | 83        |
| 17 | Non-volatile memory devices with redox-active diruthenium molecular compound. Journal of Physics<br>Condensed Matter, 2016, 28, 094009.                                                           | 0.7 | 23        |
| 18 | Modifying Spin Injection Characteristics in the Co/Alq <sub>3</sub> System by Using a Molecular<br>Self-Assembled Monolayer. Journal of Physical Chemistry C, 2015, 119, 12949-12955.             | 1.5 | 10        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Redox-Active Molecular Nanowire Flash Memory for High-Endurance and High-Density Nonvolatile<br>Memory Applications. ACS Applied Materials & Interfaces, 2015, 7, 27306-27313.                                    | 4.0 | 59        |
| 20 | Self-Assembled Monolayers Impact Cobalt Interfacial Structure in Nanoelectronic Junctions. Journal of Physical Chemistry C, 2015, 119, 6687-6695.                                                                 | 1.5 | 16        |
| 21 | Attachment of a Diruthenium Compound to Au and SiO <sub>2</sub> /Si Surfaces by "Click―Chemistry.<br>Langmuir, 2014, 30, 10280-10289.                                                                             | 1.6 | 17        |
| 22 | Interface Engineering To Control Magnetic Field Effects of Organic-Based Devices by Using a<br>Molecular Self-Assembled Monolayer. ACS Nano, 2014, 8, 7192-7201.                                                  | 7.3 | 19        |
| 23 | Soft X-rays shedding light on thin-film solar cell surfaces and interfaces. Journal of Electron<br>Spectroscopy and Related Phenomena, 2013, 190, 47-53.                                                          | 0.8 | 7         |
| 24 | Soft X-ray and electron spectroscopy to determine the electronic structure of materials for photoelectrochemical hydrogen production. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 106-112. | 0.8 | 9         |
| 25 | Electrical and Physical Characterization of Bilayer Carboxylic Acid-Functionalized Molecular Layers.<br>Langmuir, 2013, 29, 2083-2091.                                                                            | 1.6 | 12        |
| 26 | Non-volatile memory with self-assembled ferrocene charge trapping layer. Applied Physics Letters, 2013, 103, .                                                                                                    | 1.5 | 19        |
| 27 | Cu <sub>2</sub> ZnSnS <sub>4</sub> thin-film solar cell absorbers illuminated by soft x-rays. Journal of Materials Research, 2012, 27, 1097-1104.                                                                 | 1.2 | 14        |
| 28 | Ultrafast Proton Dynamics in Aqueous Amino Acid Solutions Studied by Resonant Inelastic Soft X-ray<br>Scattering. Journal of Physical Chemistry B, 2012, 116, 13757-13764.                                        | 1.2 | 37        |
| 29 | Microstructure of vanadium-based contacts on n-type GaN. Journal Physics D: Applied Physics, 2012, 45, 105401.                                                                                                    | 1.3 | 5         |
| 30 | Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction. Applied Physics Letters, 2011, 99, .                                | 1.5 | 181       |
| 31 | Impact of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin-film solar cell absorbers. Applied Physics Letters, 2011, 99, .                                                          | 1.5 | 69        |
| 32 | Native oxidation and Cu-poor surface structure of thin film Cu2ZnSnS4 solar cell absorbers. Applied Physics Letters, 2011, 99, .                                                                                  | 1.5 | 48        |
| 33 | The electrochemical reduction of PdCl42â^' and PdCl62â^' in polyaniline: Influence of Pd deposit morphology on methanol oxidation in alkaline solution. Electrochimica Acta, 2011, 56, 6060-6070.                 | 2.6 | 18        |
| 34 | Sulfur gradient-driven Se diffusion at the CdS/CuIn(S,Se)2 solar cell interface. Applied Physics Letters, 2010, 96, .                                                                                             | 1.5 | 22        |
| 35 | Nondestructive depth-resolved spectroscopic investigation of the heavily intermixed In2S3/Cu(In,Ga)Se2 interface. Applied Physics Letters, 2010, 96, 184101.                                                      | 1.5 | 24        |
| 36 | Effects of postdeposition treatments on surfaces of CdTe/CdS solar cells. Applied Physics Letters, 2010. 97. 172109.                                                                                              | 1.5 | 22        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Solid and liquid spectroscopic analysis (SALSA)–a soft x-ray spectroscopy endstation with a novel flow-through liquid cell. Review of Scientific Instruments, 2009, 80, 123102. | 0.6 | 77        |
| 38 | Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films. Applied Physics Letters, 2008, 93, .                                                                                    | 1.5 | 72        |
| 39 | Intermixing and chemical structure at the interface between n-GaN and V-based contacts. Applied Physics Letters, 2008, 93, .                                                    | 1.5 | 14        |