List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4892006/publications.pdf Version: 2024-02-01

REN NEWLAND

#	Article	IF	CITATIONS
1	Cryogel scaffolds: soft and easy to use tools for neural tissue culture. Neural Regeneration Research, 2022, 17, 1981.	1.6	5
2	Well-Defined Polyethylene Glycol Microscale Hydrogel Blocks Containing Gold Nanorods for Dual Photothermal and Chemotherapeutic Therapy. Pharmaceutics, 2022, 14, 551.	2.0	3
3	Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomaterialia, 2021, 121, 250-262.	4.1	25
4	Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies. Biomaterials Science, 2021, 9, 6037-6051.	2.6	15
5	Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. Journal of Materials Chemistry B, 2021, 9, 6326-6346.	2.9	46
6	New avenues for therapy in mitochondrial optic neuropathies. Therapeutic Advances in Rare Disease, 2021, 2, 263300402110290.	0.3	0
7	Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chemical Neuroscience, 2021, 12, 1178-1188.	1.7	12
8	Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials, 2021, 271, 120712.	5.7	12
9	Cryogel biomaterials for neuroscience applications. Neurochemistry International, 2021, 147, 105012.	1.9	24
10	Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. Journal of Parkinson's Disease, 2021, 11, S229-S236.	1.5	4
11	Does local drug delivery still hold therapeutic promise for brain cancer? A systematic review. Journal of Controlled Release, 2021, 337, 296-305.	4.8	22
12	Oxygen-glucose deprivation in neurons: implications for cell transplantation therapies. Progress in Neurobiology, 2021, 205, 102126.	2.8	5
13	Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathologica, 2021, 141, 415-429.	3.9	37
14	Macroporous heparin-based microcarriers allow long-term 3D culture and differentiation of neural precursor cells. Biomaterials, 2020, 230, 119540.	5.7	27
15	The ying and yang of idebenone: Not too little, not too much – cell death in NQO1 deficient cells and the mouse retina. Free Radical Biology and Medicine, 2020, 152, 551-560.	1.3	14
16	Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. Nanoscale Advances, 2020, 2, 4498-4509.	2.2	8
17	Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomaterials Science, 2020, 8, 4997-5004.	2.6	15
18	Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis. Carbohydrate Polymers, 2020, 245, 116504.	5.1	16

#	Article	IF	CITATIONS
19	Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nature Reviews Chemistry, 2020, 4, 194-212.	13.8	93
20	Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers. MethodsX, 2020, 7, 100805.	0.7	9
21	Highly branched Âpoly(β-amino ester)Âdelivery of minicircle DNA for transfection of neurodegenerativeÂdisease related cells. Nature Communications, 2019, 10, 3307.	5.8	80
22	Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research. Acta Biomaterialia, 2019, 97, 216-229.	4.1	15
23	Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale, 2018, 10, 8413-8421.	2.8	22
24	Catechol functionalized hyperbranched polymers as biomedical materials. Progress in Polymer Science, 2018, 78, 47-55.	11.8	85
25	Extracellular Matrix Components HAPLN1, Lumican, and Collagen I Cause Hyaluronic Acid-Dependent Folding of the Developing Human Neocortex. Neuron, 2018, 99, 702-719.e6.	3.8	139
26	Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation. Biomaterials Science, 2018, 6, 2571-2577.	2.6	13
27	Oxygen-Producing Gellan Gum Hydrogels for Dual Delivery of Either Oxygen or Peroxide with Doxorubicin. ACS Biomaterials Science and Engineering, 2017, 3, 787-792.	2.6	43
28	Controlled Polymerization of Multivinyl Monomers: Formation of Cyclized/Knotted Singleâ€Chain Polymer Architectures. Angewandte Chemie - International Edition, 2017, 56, 450-460.	7.2	43
29	Kontrollierte Polymerisation von Multivinylâ€Monomeren: Bildung einer cyclischen/verknoteten Einzelkettenâ€Polymerarchitektur. Angewandte Chemie, 2017, 129, 462-473.	1.6	5
30	Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multiâ€walled carbon nanotubes. Journal of Interdisciplinary Nanomedicine, 2016, 1, 9-18.	3.6	8
31	Non-viral xylosyltransferase-1 siRNA delivery as an effective alternative to chondroitinase in an in vitro model of reactive astrocytes. Neuroscience, 2016, 339, 267-275.	1.1	7
32	Targeting delivery in Parkinson's disease. Drug Discovery Today, 2016, 21, 1313-1320.	3.2	15
33	Highly branched poly(β-amino ester)s for skin gene therapy. Journal of Controlled Release, 2016, 244, 336-346.	4.8	95
34	Synthesis of ROS scavenging microspheres from a dopamine containing poly(β-amino ester) for applications for neurodegenerative disorders. Biomaterials Science, 2016, 4, 400-404.	2.6	31
35	A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation. Biochemical and Biophysical Research Communications, 2016, 469, 830-835.	1.0	23
36	Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin. Scientific Reports, 2015, 5, 17478.	1.6	16

#	Article	IF	CITATIONS
37	Tackling Cell Transplantation Anoikis: An Injectable, Shape Memory Cryogel Microcarrier Platform Material for Stem Cell and Neuronal Cell Growth. Small, 2015, 11, 5047-5053.	5.2	62
38	Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science, 2015, 44, 79-112.	11.8	24
39	On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. Journal of Materials Chemistry B, 2015, 3, 6420-6428.	2.9	65
40	Beyond Branching: Multiknot Structured Polymer for Gene Delivery. Biomacromolecules, 2014, 15, 4520-4527.	2.6	18
41	A biomimetic hyperbranched poly(amino ester)-based nanocomposite as a tunable bone adhesive for sternal closure. Journal of Materials Chemistry B, 2014, 2, 4067.	2.9	66
42	Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain. Nanoscale, 2014, 6, 7526-7533.	2.8	28
43	Significance of Branching for Transfection: Synthesis of Highly Branched Degradable Functional Poly(dimethylaminoethyl methacrylate) by Vinyl Oligomer Combination. Angewandte Chemie - International Edition, 2014, 53, 6095-6100.	7.2	74
44	Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials, 2014, 35, 711-719.	5.7	205
45	Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene. Gene Therapy, 2013, 20, 1149-1157.	2.3	57
46	Controlled homopolymerization of multi-vinyl monomers: dendritic polymers synthesized via an optimized ATRA reaction. Chemical Communications, 2013, 49, 10124.	2.2	11
47	Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomaterials Science, 2013, 1, 556.	2.6	19
48	The reduction in immunogenicity of neurotrophin overexpressing stem cells after intra-striatal transplantation by encapsulation inÂanÂinÂsitu gelling collagen hydrogel. Biomaterials, 2013, 34, 9420-9429.	5.7	75
49	GDNF Gene Delivery via a 2-(Dimethylamino)ethyl Methacrylate Based Cyclized Knot Polymer for Neuronal Cell Applications. ACS Chemical Neuroscience, 2013, 4, 540-546.	1.7	32
50	The neurotoxicity of gene vectors and its amelioration by packaging with collagen hollow spheres. Biomaterials, 2013, 34, 2130-2141.	5.7	37
51	Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 465-474.	2.0	14
52	The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage. Chemical Communications, 2012, 48, 585-587.	2.2	20
53	Single cyclized molecule structures from RAFT homopolymerization of multi-vinyl monomers. Chemical Communications, 2012, 48, 3085.	2.2	24
54	Single Cyclized Molecule Versus Single Branched Molecule: A Simple and Efficient 3D "Knot―Polymer Structure for Nonviral Gene Delivery. Journal of the American Chemical Society, 2012, 134, 4782-4789.	6.6	81

#	Article	IF	CITATIONS
55	3D Single Cyclized Polymer Chain Structure from Controlled Polymerization of Multi-Vinyl Monomers: Beyond Flory–Stockmayer Theory. Journal of the American Chemical Society, 2011, 133, 13130-13137.	6.6	82
56	Dual stimuli responsive PEG based hyperbranched polymers. Polymer Chemistry, 2010, 1, 827.	1.9	40
57	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	2.2	86
58	A reliable method for detecting complexed DNA in vitro. Nanoscale, 2010, 2, 2718.	2.8	9