
Matthias Hahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
2	The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 2014, 7, 133-141.	2.2	332
3	Fungicide-Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea. PLoS Pathogens, 2009, 5, e1000696.	4.7	329
4	A gapless genome sequence of the fungus <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2017, 18, 75-89.	4.2	265
5	One stop shop: backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity, 2014, 67, 21-125.	12.3	241
6	Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Molecular Microbiology, 2006, 59, 821-835.	2.5	205
7	The ABC transporter BcatrB from <i>Botrytis cinerea</i> exports camalexin and is a virulence factor on <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 58, 499-510.	5.7	178
8	Gray Mold Populations in German Strawberry Fields Are Resistant to Multiple Fungicides and Dominated by a Novel Clade Closely Related to Botrytis cinerea. Applied and Environmental Microbiology, 2013, 79, 159-167.	3.1	176
9	The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology, 2007, 8, 173-184.	4.2	146
10	The role of mitogenâ€activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2010, 11, 105-119.	4.2	132
11	Fungicide Resistance Phenotypes of Botrytis cinerea Isolates from Commercial Vineyards in South West Germany. Journal of Phytopathology, 2011, 159, 63-65.	1.0	126
12	Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture. Frontiers in Microbiology, 2016, 7, 2075.	3.5	121
13	Detection and Molecular Characterization of Boscalid-Resistant <i>Botrytis cinerea</i> Isolates from Strawberry. Plant Disease, 2011, 95, 1302-1307.	1.4	120
14	Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genetics and Biology, 2006, 43, 8-19.	2.1	101
15	Transcriptome Profiling of Botrytis cinerea Conidial Germination Reveals Upregulation of Infection-Related Genes during the Prepenetration Stage. Eukaryotic Cell, 2013, 12, 614-626.	3.4	88
16	Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology (United Kingdom), 2006, 152, 2625-2634.	1.8	81
17	Living Colors in the Gray Mold Pathogen Botrytis cinerea: Codon-Optimized Genes Encoding Green Fluorescent Protein and mCherry, Which Exhibit Bright Fluorescence. Applied and Environmental Microbiology, 2011, 77, 2887-2897.	3.1	78
18	A rapid and simple method for determining fungicide resistance in Botrytis. Journal of Plant Diseases and Protection, 2011, 118, 17-25.	2.9	77

Matthias Hahn

#	Article	IF	CITATIONS
19	Investigations on <scp>VELVET</scp> regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of <i>Botrytis cinerea</i> . New Phytologist, 2018, 219, 1062-1074.	7.3	76
20	Botrytis pseudocinerea Is a Significant Pathogen of Several Crop Plants but Susceptible to Displacement by Fungicide-Resistant B. cinerea Strains. Applied and Environmental Microbiology, 2015, 81, 7048-7056.	3.1	59
21	CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. PLoS Pathogens, 2020, 16, e1008326.	4.7	55
22	Population Structure, Fungicide Resistance Profile, and <i>sdhB</i> Mutation Frequency of <i>Botrytis cinerea</i> from Strawberry and Greenhouse-Grown Tomato in Greece. Plant Disease, 2015, 99, 240-248.	1.4	53
23	Botrytisfragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance. Applied and Environmental Microbiology, 2017, 83, .	3.1	47
24	Multiple knockout mutants reveal a high redundancy of phytotoxic compounds contributing to necrotrophic pathogenesis of Botrytis cinerea. PLoS Pathogens, 2022, 18, e1010367.	4.7	45
25	Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea. BMC Microbiology, 2011, 11, 10.	3.3	43
26	The signalling mucin <scp>M</scp> sb2 regulates surface sensing and host penetration via <scp>BMP1 MAP</scp> kinase signalling in <i><scp>B</scp>otrytis cinerea</i> . Molecular Plant Pathology, 2015, 16, 787-798.	4.2	42
27	Evaluation of the incidence of the G143A mutation and <i>cytb</i> intron presence in the <i>cytochrome bcâ€I</i> gene conferring Qol resistance in <i>Botrytis cinerea</i> populations from several hosts. Pest Management Science, 2011, 67, 1029-1036.	3.4	38
28	The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Microbiology (United Kingdom), 2007, 153, 2791-2802.	1.8	36
29	The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. PLoS Pathogens, 2018, 14, e1007285.	4.7	36
30	Two novel Venturia inaequalis genes induced upon morphogenetic differentiation during infection and in vitro growth on cellophane. Fungal Genetics and Biology, 2008, 45, 1329-1339.	2.1	35
31	Fungicide resistance of Botrytis cinerea from strawberry to procymidone and zoxamide in Hubei, China. Phytopathology Research, 2019, 1, .	2.4	33
32	Involvement of two type 2 <scp>C</scp> protein phosphatases <scp>B</scp> c <scp>P</scp> tc1 and <scp>B</scp> c <scp>P</scp> tc3 in the regulation of multiple stress tolerance and virulence of <i><scp>B</scp>otrytis cinerea</i> . Environmental Microbiology, 2013, 15, 2696-2711.	3.8	32
33	Lipid droplet biogenesis regulated by the FgNem1/Spo7â€FgPah1 phosphatase cascade plays critical roles in fungal development and virulence in <i>Fusarium graminearum</i> . New Phytologist, 2019, 223, 412-429.	7.3	32
34	Grey mould disease of strawberry in northern Germany: causal agents, fungicide resistance and management strategies. Applied Microbiology and Biotechnology, 2019, 103, 1589-1597.	3.6	29
35	Genetic Diversity of Botrytis cinerea Revealed by Multilocus Sequencing, and Identification of B. cinerea Populations Showing Genetic Isolation and Distinct Host Adaptation. Frontiers in Plant Science, 2021, 12, 663027.	3.6	24
36	Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. Genome Biology, 2021, 22, 225.	8.8	24

Matthias Hahn

#	Article	IF	CITATIONS
37	The Uredinales: Cytology, Biochemistry, and Molecular Biology. , 2009, , 69-98.		23
38	The Genome of Botrytis cinerea, a Ubiquitous Broad Host Range Necrotroph. , 2014, , 19-44.		21
39	Rapid detection of benzimidazole resistance in Botrytis cinerea by loop-mediated isothermal amplification. Phytopathology Research, 2019, 1, .	2.4	14
40	One Cut to Change Them All: CRISPR/Cas, a Groundbreaking Tool for Genome Editing in <i>Botrytis cinerea</i> and Other Fungal Plant Pathogens. Phytopathology, 2021, 111, 474-477.	2.2	9
41	Cytotoxic activity of Nep1â€like proteins on monocots. New Phytologist, 2022, 235, 690-700.	7.3	9
42	Antifungal Activity of Tetrasulfanes against Botrytis cinerea. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	7
43	Multidrug Efflux Transporters. , 2015, , 233-248.		6
44	Antifungal activity of tetrasulfanes against Botrytis cinerea. Natural Product Communications, 2013, 8, 1599-603.	0.5	6
45	Botrytis cinerea can import and utilize nucleosides in salvage and catabolism and BcENT functions as high affinity nucleoside transporter. Fungal Biology, 2016, 120, 904-916.	2.5	5
46	Selected genotypes with the genetic background of Vitis aestivalis and Vitis labrusca are resistant to Xiphinema index. Plant Disease, 2021, , PDIS12202716RE.	1.4	2
47	Fenhexamid - an efficient and inexpensive fungicide for selection of Magnaporthe oryzae transformants. European Journal of Plant Pathology, 2022, 162, 697.	1.7	2
48	Electrochemical Potential-Biological Activity Relationships of Cyclic Sulfur-Containing Molecules Against Steinernema feltiae, Botrytis cinerea, and Neuro 2a Cell Line. Current Pharmacology Reports, 2019, 5, 174-187.	3.0	0
49	Title is missing!. , 2020, 16, e1008326.		Ο
50	Title is missing!. , 2020, 16, e1008326.		0
51	Title is missing!. , 2020, 16, e1008326.		Ο
52	Title is missing!. , 2020, 16, e1008326.		0
53	Title is missing!. , 2020, 16, e1008326.		0
54	Title is missing!. , 2020, 16, e1008326.		0