Elisabeth Génot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-155 regulates physiological angiogenesis but an miR-155-rich microenvironment disrupts the process by promoting unproductive endothelial sprouting. Cellular and Molecular Life Sciences, 2022, 79, 208.	5.4	3
2	Realâ€Time Analysis of Polyphenol–Protein Interactions by Surface Plasmon Resonance Using Surfaceâ€Bound Polyphenols. Chemistry - A European Journal, 2021, 27, 5498-5508.	3.3	6
3	Thrombomodulin, an Unexpected New Player in Endothelial Cell Invasion During Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1672-1674.	2.4	1
4	Podosomes in endothelial cellmicroenvironment interactions. Current Opinion in Hematology, 2020, 27, 197-205.	2.5	7
5	Regulation of podosome formation in aortic endothelial cells vessels by physiological extracellular cues. European Journal of Cell Biology, 2020, 99, 151084.	3.6	5
6	BMP-SMAD1/5 Signaling Regulates Retinal Vascular Development. Biomolecules, 2020, 10, 488.	4.0	24
7	Intersection of TKS5 and FGD1/CDC42 signaling cascades directs the formation of invadopodia. Journal of Cell Biology, 2020, 219, .	5.2	23
8	Variations on the theme of podosomes: A matter of context. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 545-553.	4.1	36
9	Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. Advances in Experimental Medicine and Biology, 2019, 1146, 79-103.	1.6	3
10	Anti-osteoclastic effects of C-glucosidic ellagitannins mediated by actin perturbation. European Journal of Cell Biology, 2018, 97, 533-545.	3.6	5
11	Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2136-2146.	2.4	29
12	ARF1 at the crossroads of podosome construction and function. Journal of Cell Biology, 2017, 216, 13-15.	5.2	1
13	VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. Journal of Cell Science, 2016, 129, 2586-98.	2.0	18
14	VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during Retinal Sprouting Angiogenesis. Cell Reports, 2016, 17, 484-500.	6.4	56
15	Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit. Methods, 2016, 94, 65-74.	3.8	19
16	Podosomes: Multipurpose organelles?. International Journal of Biochemistry and Cell Biology, 2015, 65, 52-60.	2.8	43
17	A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta. PLoS ONE, 2015, 10, e0143144.	2.5	5
18	Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases, 2014, 5, e28195.	1.6	45

Elisabeth Génot

#	Article	IF	CITATIONS
19	ALK5 and ALK1 Play Antagonistic Roles in Transforming Growth Factor Î ² -Induced Podosome Formation in Aortic Endothelial Cells. Molecular and Cellular Biology, 2014, 34, 4389-4403.	2.3	25
20	Invadosomes in their natural habitat. European Journal of Cell Biology, 2014, 93, 367-379.	3.6	50
21	Podosomes as novel players in endothelial biology. European Journal of Cell Biology, 2014, 93, 405-412.	3.6	14
22	Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biology of the Cell, 2013, 105, 46-57.	2.0	53
23	Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Molecular Biology of the Cell, 2012, 23, 297-309.	2.1	84
24	Helicobacter infection induces podosome assembly in primary hepatocytes in vitro. European Journal of Cell Biology, 2012, 91, 161-170.	3.6	29
25	Invadosomes: Intriguing structures with promise. European Journal of Cell Biology, 2011, 90, 100-107.	3.6	90
26	Binding of Filamentous Actin and Winding into Fibrillar Aggregates by the Polyphenolic Câ€Glucosidic Ellagitannin Vescalagin. Angewandte Chemie - International Edition, 2011, 50, 5099-5104.	13.8	23
27	The Aarskog-Scott Syndrome Protein Fgd1 Regulates Podosome Formation and Extracellular Matrix Remodeling in Transforming Growth Factor β-Stimulated Aortic Endothelial Cells. Molecular and Cellular Biology, 2011, 31, 4430-4441.	2.3	38
28	Zona occludens proteins modulate podosome formation and function. FASEB Journal, 2011, 25, 505-514.	0.5	22
29	Sodium fluoride induces podosome formation in endothelial cells. Biology of the Cell, 2010, 102, 489-498.	2.0	16
30	TGFβ-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. Journal of Cell Science, 2009, 122, 4311-4318.	2.0	92
31	Regulatory signals for endothelial podosome formation. European Journal of Cell Biology, 2008, 87, 543-554.	3.6	21
32	p190B RhoGAP regulates endothelial-cell-associated proteolysis through MT1-MMP and MMP2. Journal of Cell Science, 2008, 121, 2054-2061.	2.0	43
33	CD44 and β3 Integrin Organize Two Functionally Distinct Actin-based Domains in Osteoclasts. Molecular Biology of the Cell, 2007, 18, 4899-4910.	2.1	135
34	A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. Journal of Cell Science, 2006, 119, 769-781.	2.0	150
35	TGFβ1-induced aortic endothelial morphogenesis requires signaling by small GTPases Rac1 and RhoA. Experimental Cell Research, 2006, 312, 3604-3619.	2.6	24
36	Cdc42-driven podosome formation in endothelial cells. European Journal of Cell Biology, 2006, 85, 319-325.	3.6	39

#	Article	IF	CITATIONS
37	Transforming Growth Factor \hat{I}^2 Induces Rosettes of Podosomes in Primary Aortic Endothelial Cells. Molecular and Cellular Biology, 2006, 26, 3582-3594.	2.3	155
38	Actin Can Reorganize into Podosomes in Aortic Endothelial Cells, a Process Controlled by Cdc42 and RhoA. Molecular and Cellular Biology, 2003, 23, 6809-6822.	2.3	180