
## Vladimir A Botchkarev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891143/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Histone Deacetylases in the Control of Epidermal Homeostasis: From Chromatin Biology toward<br>Therapy. Journal of Investigative Dermatology, 2022, 142, 12-14.                                                                               | 0.7 | 1         |
| 2  | Epigenetic Regulation of Cellular Senescence. Cells, 2022, 11, 672.                                                                                                                                                                           | 4.1 | 43        |
| 3  | Skin Aging in Long-Lived Naked Mole-Rats Is Accompanied by Increased Expression of<br>Longevity-Associated and Tumor Suppressor Genes. Journal of Investigative Dermatology, 2022, 142,<br>2853-2863.e4.                                      | 0.7 | 5         |
| 4  | Interplay of MicroRNA-21 and SATB1 in Epidermal Keratinocytes during Skin Aging. Journal of Investigative Dermatology, 2019, 139, 2538-2542.e2.                                                                                               | 0.7 | 11        |
| 5  | Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?. Lasers in Surgery and Medicine, 2019, 51, 370-382.                                                                          | 2.1 | 85        |
| 6  | All Roads Go to the Nucleus: Integration of Signaling/Transcription Factor-Mediated and Epigenetic<br>Regulatory Mechanisms in theÂControl of Skin Development and Regeneration. Pancreatic Islet Biology,<br>2018, , 1-55.                   | 0.3 | 0         |
| 7  | The Molecular Revolution in Cutaneous Biology: Chromosomal Territories, Higher-Order Chromatin<br>Remodeling, and the Control ofÂGene Expression in Keratinocytes. Journal of Investigative<br>Dermatology, 2017, 137, e93-e99.               | 0.7 | 19        |
| 8  | Second International Symposium—Epigenetic Regulation of Skin Regeneration and Aging:<br>FromÂChromatin Biology towards the Understanding ofÂEpigenetic Basis of Skin Diseases. Journal of<br>Investigative Dermatology, 2017, 137, 1604-1608. | 0.7 | 2         |
| 9  | p63 Transcription Factor Regulates NuclearÂShape and Expression of NuclearÂEnvelope-Associated<br>Genes in Epidermal Keratinocytes. Journal of Investigative Dermatology, 2017, 137, 2157-2167.                                               | 0.7 | 25        |
| 10 | 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells. PLoS Genetics, 2017, 13, e1006966.                                  | 3.5 | 33        |
| 11 | Repressing the Keratinocyte Genome: How the Polycomb Complex Subunits Operate in Concert to<br>Control Skin and Hair Follicle Development. Journal of Investigative Dermatology, 2016, 136, 1538-1540.                                        | 0.7 | 9         |
| 12 | Modeling Chemotherapy-Induced Hair Loss: From Experimental Propositions toward Clinical Reality.<br>Journal of Investigative Dermatology, 2016, 136, 557-559.                                                                                 | 0.7 | 6         |
| 13 | Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. Journal of Cell Biology, 2016, 212, 77-89.                                                                                     | 5.2 | 57        |
| 14 | Epigenetic Regulation of Epidermal Development and Keratinocyte Differentiation. Journal of<br>Investigative Dermatology Symposium Proceedings, 2015, 17, 18-19.                                                                              | 0.8 | 9         |
| 15 | Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of<br>Keratinocyte Differentiation. Journal of Investigative Dermatology Symposium Proceedings, 2015, 17,<br>30-32.                                | 0.8 | 15        |
| 16 | p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal<br>differentiation complex locus in epidermal progenitor cells. Development (Cambridge), 2014, 141,<br>3437-3437.                          | 2.5 | 6         |
| 17 | The Epigenetic Regulation of Wound Healing. Advances in Wound Care, 2014, 3, 468-475.                                                                                                                                                         | 5.1 | 47        |
| 18 | p53/p63/p73 in the Epidermis in Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015248.                                                                                                                            | 6.2 | 96        |

2

## Vladimir A Botchkarev

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal<br>differentiation complex locus in epidermal progenitor cells. Development (Cambridge), 2014, 141,<br>101-111. | 2.5  | 81        |
| 20 | Complex Changes in the Apoptotic and Cell Differentiation Programs during Initiation of the Hair<br>Follicle Response to Chemotherapy. Journal of Investigative Dermatology, 2014, 134, 2873-2882.                 | 0.7  | 12        |
| 21 | Embryology of the Pilosebaceous Unit. , 2014, , 9-17.                                                                                                                                                              |      | 0         |
| 22 | Genome organizing function of SATB1 in tumor progression. Seminars in Cancer Biology, 2013, 23, 72-79.                                                                                                             | 9.6  | 117       |
| 23 | Cbx4 regulates the proliferation of thymic epithelial cells and thymus function. Development (Cambridge), 2013, 140, 780-788.                                                                                      | 2.5  | 64        |
| 24 | Remodeling of Three-Dimensional Organization of the Nucleus during Terminal Keratinocyte<br>Differentiation in the Epidermis. Journal of Investigative Dermatology, 2013, 133, 2191-2201.                          | 0.7  | 60        |
| 25 | Pathobiology of chemotherapy-induced hair loss. Lancet Oncology, The, 2013, 14, e50-e59.                                                                                                                           | 10.7 | 222       |
| 26 | Cbx4 regulates the proliferation of thymic epithelial cells and thymus function. Journal of Cell Science, 2013, 126, e1-e1.                                                                                        | 2.0  | 0         |
| 27 | Epigenetic Regulation of Gene Expression in Keratinocytes. Journal of Investigative Dermatology, 2012,<br>132, 2505-2521.                                                                                          | 0.7  | 111       |
| 28 | Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852.                                       | 2.5  | 104       |
| 29 | Matrix Metalloproteinase-9 Is Involved in the Regulation of Hair Canal Formation. Journal of Investigative Dermatology, 2011, 131, 257-260.                                                                        | 0.7  | 19        |
| 30 | p63 regulates <i>Satb1</i> to control tissue-specific chromatin remodeling during development of the epidermis. Journal of Cell Biology, 2011, 194, 825-839.                                                       | 5.2  | 160       |
| 31 | Nerve Growth Factor Partially Recovers Inflamed Skin from Stress-Induced Worsening in Allergic Inflammation. Journal of Investigative Dermatology, 2011, 131, 735-743.                                             | 0.7  | 47        |
| 32 | BMP Signaling Induces Cell-Type-Specific Changes in Gene Expression Programs of Human Keratinocytes and Fibroblasts. Journal of Investigative Dermatology, 2010, 130, 398-404.                                     | 0.7  | 26        |
| 33 | Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice. Journal of Clinical Investigation, 2010, 120, 446-456.                                          | 8.2  | 31        |
| 34 | Bone Morphogenetic Protein Antagonist Noggin Promotes Skin Tumorigenesis via Stimulation of the<br>Wnt and Shh Signaling Pathways. American Journal of Pathology, 2009, 175, 1303-1314.                            | 3.8  | 37        |
| 35 | Substance P as an Immunomodulatory Neuropeptide in a Mouse Model for Autoimmune Hair Loss<br>(Alopecia Areata). Journal of Investigative Dermatology, 2007, 127, 1489-1497.                                        | 0.7  | 102       |
| 36 | Oligonucleotide treatment increases eumelanogenesis, hair pigmentation and melanocortin-1 receptor expression in the hair follicle. Experimental Dermatology, 2007, 16, 671-677.                                   | 2.9  | 15        |

## VLADIMIR A BOTCHKAREV

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Involvement of the Edar Signaling in the Control of Hair Follicle Involution (Catagen). American<br>Journal of Pathology, 2006, 169, 2075-2084.                                                                                                 | 3.8 | 42        |
| 38 | Neurotrophins in Skin Biology and Pathology. Journal of Investigative Dermatology, 2006, 126, 1719-1727.                                                                                                                                        | 0.7 | 154       |
| 39 | Bone morphogenetic protein signaling regulates the size of hair follicles and modulates the expression of cell cycle-associated genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18166-18171. | 7.1 | 90        |
| 40 | Neurotrophins in Autoimmune Diseases: Possible Implications for Alopecia Areata. Journal of<br>Investigative Dermatology Symposium Proceedings, 2005, 10, 282.                                                                                  | 0.8 | 2         |
| 41 | Changes in Different Melanocyte Populations During Hair Follicle Involution (Catagen). Journal of<br>Investigative Dermatology, 2005, 125, 1259-1267.                                                                                           | 0.7 | 39        |
| 42 | Edar Signaling in the Control of Hair Follicle Development. Journal of Investigative Dermatology<br>Symposium Proceedings, 2005, 10, 247-251.                                                                                                   | 0.8 | 68        |
| 43 | Bone morphogenetic protein (BMP) signaling controls hair pigmentation by means of cross-talk with the melanocortin receptor-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 93-98.       | 7.1 | 68        |
| 44 | Integration of Notch 1 and Calcineurin/NFAT Signaling Pathways in Keratinocyte Growth and Differentiation Control. Developmental Cell, 2005, 8, 665-676.                                                                                        | 7.0 | 163       |
| 45 | Fas Signaling Is Involved in the Control of Hair Follicle Response to Chemotherapy. Cancer Research, 2004, 64, 6266-6270.                                                                                                                       | 0.9 | 32        |
| 46 | Epithelial growth control by neurotrophins: leads and lessons from the hair follicle. Progress in<br>Brain Research, 2004, 146, 493-513.                                                                                                        | 1.4 | 88        |
| 47 | Neurotrophin-3 regulates mast cell functions in neonatal mouse skin. Experimental Dermatology, 2004, 13, 273-281.                                                                                                                               | 2.9 | 29        |
| 48 | BMP signaling in the control of skin development and hair follicle growth. Differentiation, 2004, 72, 512-526.                                                                                                                                  | 1.9 | 173       |
| 49 | Molecular biology of hair morphogenesis: Development and cycling. The Journal of Experimental<br>Zoology, 2003, 298B, 164-180.                                                                                                                  | 1.4 | 144       |
| 50 | Modulations of nerve growth factor and Bcl-2 in ultraviolet-irradiated human epidermis. Journal of<br>Cutaneous Pathology, 2003, 30, 351-357.                                                                                                   | 1.3 | 40        |
| 51 | Bone Morphogenetic Proteins and Their Antagonists in Skin and Hair Follicle Biology. Journal of<br>Investigative Dermatology, 2003, 120, 36-47.                                                                                                 | 0.7 | 164       |
| 52 | p75 Neurotrophin Receptor Antagonist Retards Apoptosis-driven Hair Follicle Involution (Catagen).<br>Journal of Investigative Dermatology, 2003, 120, 168-169.                                                                                  | 0.7 | 23        |
| 53 | Fas and c-kit are Involved in the Control of Hair Follicle Melanocyte Apoptosis and Migration in<br>Chemotherapy-Induced Hair Loss. Journal of Investigative Dermatology, 2003, 120, 27-35.                                                     | 0.7 | 53        |
| 54 | Molecular Control of Epithelial–Mesenchymal Interactions During Hair Follicle Cycling. Journal of<br>Investigative Dermatology Symposium Proceedings, 2003, 8, 46-55.                                                                           | 0.8 | 268       |

| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Molecular Mechanisms of Chemotherapy-Induced Hair Loss. Journal of Investigative Dermatology<br>Symposium Proceedings, 2003, 8, 72-75.                                                                                                                                                                | 0.8 | 75        |
| 56 | Fate of Melanocytes During Development of the Hair Follicle Pigmentary Unit. Journal of Investigative<br>Dermatology Symposium Proceedings, 2003, 8, 76-79.                                                                                                                                           | 0.8 | 65        |
| 57 | Fas-Deficient C3.MRL-Tnfrsf6lpr Mice and Fas Ligand-Deficient C3H/HeJ-Tnfsf6gld Mice Are Relatively<br>Resistant to the Induction of Alopecia Areata by Grafting of Alopecia Areata-Affected Skin from<br>C3H/HeJ Mice. Journal of Investigative Dermatology Symposium Proceedings, 2003, 8, 104-108. | 0.8 | 36        |
| 58 | Kit Is Expressed by Epithelial Cells In Vivo. Journal of Investigative Dermatology, 2003, 121, 976-984.                                                                                                                                                                                               | 0.7 | 50        |
| 59 | Neurotrophins and Their Role in Pathogenesis of Alopecia Areata. Journal of Investigative<br>Dermatology Symposium Proceedings, 2003, 8, 195-198.                                                                                                                                                     | 0.8 | 22        |
| 60 | Noggin overexpression inhibits eyelid opening by altering epidermal apoptosis and differentiation.<br>EMBO Journal, 2003, 22, 2992-3003.                                                                                                                                                              | 7.8 | 62        |
| 61 | Stress and the Hair Follicle. American Journal of Pathology, 2003, 162, 709-712.                                                                                                                                                                                                                      | 3.8 | 59        |
| 62 | The Lysosomal Protease Cathepsin L Is an Important Regulator of Keratinocyte and Melanocyte<br>Differentiation During Hair Follicle Morphogenesis and Cycling. American Journal of Pathology, 2002,<br>160, 1807-1821.                                                                                | 3.8 | 142       |
| 63 | Developmental timing of hair follicle and dorsal skin innervation in mice. Journal of Comparative Neurology, 2002, 448, 28-52.                                                                                                                                                                        | 1.6 | 77        |
| 64 | Modulation of BMP Signaling by Noggin is Required for Induction of the Secondary (Nontylotrich)<br>Hair Follicles. Journal of Investigative Dermatology, 2002, 118, 3-10.                                                                                                                             | 0.7 | 134       |
| 65 | p53 Involvement in the Control of Murine Hair Follicle Regression. American Journal of Pathology,<br>2001, 158, 1913-1919.                                                                                                                                                                            | 3.8 | 73        |
| 66 | Hair-Cycle-Associated Remodeling of the Peptidergic Innervation of Murine Skin, and Hair Growth<br>Modulation by Neuropeptides. Journal of Investigative Dermatology, 2001, 116, 236-245.                                                                                                             | 0.7 | 96        |
| 67 | SCF/câ€kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB Journal, 2001, 15, 645-658.                                                                                                                                                                             | 0.5 | 219       |
| 68 | Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB Journal, 2001, 15, 2205-2214.                                                                                                                                                                             | 0.5 | 207       |
| 69 | Distinct Roles for Nerve Growth Factor and Brain-Derived Neurotrophic Factor in Controlling the<br>Rate of Hair Follicle Morphogenesis. Journal of Investigative Dermatology, 2000, 114, 314-320.                                                                                                     | 0.7 | 32        |
| 70 | Control of murine hair follicle regression (catagen) by TGFâ€Î²1 <i>in vivo</i> . FASEB Journal, 2000, 14, 752-760.                                                                                                                                                                                   | 0.5 | 301       |
| 71 | A role for p75 neurotrophin receptor in the control of apoptosisâ€driven hair follicle regression.<br>FASEB Journal, 2000, 14, 1931-1942.                                                                                                                                                             | O.5 | 94        |
| 72 | Intercellular Adhesion Molecule-1 and Hair Follicle Regression. Journal of Histochemistry and Cytochemistry, 2000, 48, 557-568.                                                                                                                                                                       | 2.5 | 28        |

VLADIMIR A BOTCHKAREV

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Cathepsin L deficiency as molecular defect offurless:hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB Journal, 2000, 14, 2075-2086.    | 0.5  | 290       |
| 74 | New Roles for Glial Cell Line-Derived Neurotrophic Factor and Neurturin. American Journal of Pathology, 2000, 156, 1041-1053.                                             | 3.8  | 50        |
| 75 | A new role for neurotrophins: involvement of brainâ€derived neurotrophic factor and neurotrophinâ€4<br>in hair cycle control. FASEB Journal, 1999, 13, 395-410.           | 0.5  | 93        |
| 76 | Retardation of Hair Follicle Development by the Deletion of TrkC, High-Affinity Neurotrophin-3<br>Receptor. Journal of Investigative Dermatology, 1999, 113, 425-427.     | 0.7  | 13        |
| 77 | Overexpression of Brain-Derived Neurotrophic Factor Increases Merkel Cell Number in Murine Skin.<br>Journal of Investigative Dermatology, 1999, 113, 691-692.             | 0.7  | 14        |
| 78 | Hair Cycle-Dependent Changes in Adrenergic Skin Innervation, and Hair Growth Modulation by<br>Adrenergic Drugs. Journal of Investigative Dermatology, 1999, 113, 878-887. | 0.7  | 90        |
| 79 | Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biology, 1999, 1, 158-164.                                                           | 10.3 | 360       |
| 80 | The Fate of Hair Follicle Melanocytes During the Hair Growth Cycle. Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 323-332.                         | 0.8  | 99        |
| 81 | Chronobiology of the Hair Follicle: Hunting the "Hair Cycle Clock― Journal of Investigative<br>Dermatology Symposium Proceedings, 1999, 4, 338-345.                       | 0.8  | 82        |
| 82 | Abundant Production of Brain-Derived Neurotrophic Factor by Adult Visceral Epithelia. American<br>Journal of Pathology, 1999, 155, 1183-1193.                             | 3.8  | 245       |
| 83 | A Role for p75 Neurotrophin Receptor in the Control of Hair Follicle Morphogenesis. Developmental<br>Biology, 1999, 216, 135-153.                                         | 2.0  | 59        |
| 84 | Cutaneous Expression of CRH and CRHâ€R: Is There a "Skin Stress Response System?― Annals of the New<br>York Academy of Sciences, 1999, 885, 287-311.                      | 3.8  | 132       |
| 85 | The Skin POMC System (SPS): Leads and Lessons from the Hair Follicle. Annals of the New York Academy of Sciences, 1999, 885, 350-363.                                     | 3.8  | 63        |
| 86 | ACTH Production in C57BL/6 Mouse Skin. Annals of the New York Academy of Sciences, 1999, 885, 448-450.                                                                    | 3.8  | 10        |
| 87 | Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. European<br>Journal of Immunology, 1998, 28, 3240-3251.                          | 2.9  | 231       |
| 88 | Intact hair follicle innervation is not essential for anagen induction and development. Archives of Dermatological Research, 1998, 290, 574-578.                          | 1.9  | 43        |
| 89 | BDNF overexpression induces differential increases among subsets of sympathetic innervation in murine back skin. European Journal of Neuroscience, 1998, 10, 3276-3283.   | 2.6  | 26        |
| 90 | Neurotrophin-3 Involvement in the Regulation of Hair Follicle Morphogenesis. Journal of<br>Investigative Dermatology, 1998, 111, 279-285.                                 | 0.7  | 55        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Do Hair Bulb Melanocytes Undergo Apotosis During Hair Follicle Regression (Catagen)?. Journal of<br>Investigative Dermatology, 1998, 111, 941-947.                                                                                                                            | 0.7 | 126       |
| 92 | Hair cycle-dependent production of ACTH in mouse skin. Biochimica Et Biophysica Acta - Molecular Cell<br>Research, 1998, 1448, 147-152.                                                                                                                                       | 4.1 | 48        |
| 93 | A New Role for Neurotrophin-3. American Journal of Pathology, 1998, 153, 785-799.                                                                                                                                                                                             | 3.8 | 81        |
| 94 | Distinct Patterns of NCAM Expression Are Associated with Defined Stages of Murine Hair Follicle<br>Morphogenesis and Regression. Journal of Histochemistry and Cytochemistry, 1998, 46, 1401-1409.                                                                            | 2.5 | 57        |
| 95 | Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. European<br>Journal of Immunology, 1998, 28, 3240-3251.                                                                                                                              | 2.9 | 1         |
| 96 | Neural Mechanisms of Hair Growth Control. Journal of Investigative Dermatology Symposium<br>Proceedings, 1997, 2, 61-68.                                                                                                                                                      | 0.8 | 99        |
| 97 | A simple immunofluorescence technique for simultaneous visualization of mast cells and nerve fibers<br>reveals selectivity and hair cycle - dependent changes in mast cell - nerve fiber contacts in murine skin.<br>Archives of Dermatological Research, 1997, 289, 292-302. | 1.9 | 114       |
| 98 | Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. , 1997, 386, 379-395.                                                                                                                                                            |     | 127       |
| 99 | Hair cycle-dependent changes in mast cell histochemistry in murine skin. Archives of Dermatological<br>Research, 1995, 287, 683-686.                                                                                                                                          | 1.9 | 23        |