Hernan G Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4891064/publications.pdf Version: 2024-02-01

HEDNAN C CARCIA

#	Article	IF	CITATIONS
1	Chromatin Changes in Phytochrome Interacting Factor-Regulated Genes Parallel Their Rapid Transcriptional Response to Light. Frontiers in Plant Science, 2022, 13, 803441.	3.6	8
2	Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Computational Biology, 2021, 17, e1008999.	3.2	25
3	Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila. ELife, 2021, 10, .	6.0	21
4	Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics. Nature Plants, 2021, 7, 1037-1049.	9.3	34
5	Fundamental limits on the rate of bacterial growth and their influence on proteomic composition. Cell Systems, 2021, 12, 924-944.e2.	6.2	45
6	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 74-97.	3.8	3
7	Lighting up the central dogma for predictive developmental biology. Current Topics in Developmental Biology, 2020, 137, 1-35.	2.2	18
8	Genetically Encoded Fluorescent Biosensor for Rapid Detection of Protein Expression. ACS Synthetic Biology, 2020, 9, 2955-2963.	3.8	10
9	A matter of time: Using dynamics and theory to uncover mechanisms of transcriptional bursting. Current Opinion in Cell Biology, 2020, 67, 147-157.	5.4	39
10	Multimodal transcriptional control of pattern formation in embryonic development. Proceedings of the United States of America, 2020, 117, 836-847.	7.1	82
11	Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility. ELife, 2020, 9, .	6.0	37
12	Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene. ELife, 2020, 9, .	6.0	32
13	Enhancer Priming Enables Fast and Sustained Transcriptional Responses to Notch Signaling. Developmental Cell, 2019, 50, 411-425.e8.	7.0	82
14	Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression. Annual Review of Biophysics, 2019, 48, 121-163.	10.0	48
15	The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal Target Enhancer to Potentiate Transcriptional Output. Current Biology, 2019, 29, 1387-1393.e5.	3.9	69
16	Live Imaging of mRNA Synthesis in Drosophila. Methods in Molecular Biology, 2018, 1649, 349-357.	0.9	18
17	LlamaTags: A Versatile Tool to Image Transcription Factor Dynamics in Live Embryos. Cell, 2018, 173, 1810-1822.e16.	28.9	113
18	Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes and Development, 2017, 31, 1784-1794.	5.9	161

HERNAN G GARCIA

#	Article	IF	CITATIONS
19	Using synthetic biology to make cells tomorrow's test tubes. Integrative Biology (United Kingdom), 2016, 8, 431-450.	1.3	9
20	Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. ELife, 2015, 4, .	6.0	146
21	The Influence of Promoter Architectures and Regulatory Motifs on Gene Expression in Escherichia coli. PLoS ONE, 2014, 9, e114347.	2.5	33
22	Dynamic regulation of <i>eve</i> stripe 2 expression reveals transcriptional bursts in living <i>Drosophila</i> embryos. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10598-10603.	7.1	223
23	The Transcription Factor Titration Effect Dictates Level of Gene Expression. Cell, 2014, 156, 1312-1323.	28.9	246
24	The embryo as a laboratory: quantifying transcription in Drosophila. Trends in Genetics, 2014, 30, 364-375.	6.7	54
25	Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning. Current Biology, 2013, 23, 2140-2145.	3.9	307
26	Theoretical and Experimental Dissection of DNA Loop-Mediated Repression. Physical Review Letters, 2013, 110, 018101.	7.8	23
27	The Plasma Membrane Flattens Out to Fuel Cell-Surface Growth during Drosophila Cellularization. Developmental Cell, 2013, 27, 648-655.	7.0	54
28	Statistical Mechanics of Monod–Wyman–Changeux (MWC) Models. Journal of Molecular Biology, 2013, 425, 1433-1460.	4.2	85
29	DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation. Physical Biology, 2013, 10, 066005.	1.8	23
30	Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria. Cell Reports, 2012, 2, 150-161.	6.4	65
31	Thermodynamics of Biological Processes. Methods in Enzymology, 2011, 492, 27-59.	1.0	45
32	Comparison and Calibration of Different Reporters for Quantitative Analysis of Gene Expression. Biophysical Journal, 2011, 101, 535-544.	0.5	25
33	Building Enhancers from the Ground Up: A Synthetic Biology Approach. Cell, 2011, 146, 105-118.	28.9	53
34	Quantitative dissection of the simple repression input–output function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12173-12178.	7.1	122
35	Effect of Promoter Architecture on the Cell-to-Cell Variability in Gene Expression. PLoS Computational Biology, 2011, 7, e1001100.	3.2	141
36	Transcription by the numbers redux: experiments and calculations that surprise. Trends in Cell Biology, 2010, 20, 723-733.	7.9	38

HERNAN G GARCIA

#	Article	IF	CITATIONS
37	Concentration and Length Dependence of DNA Looping in Transcriptional Regulation. PLoS ONE, 2009, 4, e5621.	2.5	82
38	Biological consequences of tightly bent DNA: The other life of a macromolecular celebrity. Biopolymers, 2007, 85, 115-130.	2.4	158
39	Transcriptional regulation by the numbers: applications. Current Opinion in Genetics and Development, 2005, 15, 125-135.	3.3	343
40	Transcriptional regulation by the numbers: models. Current Opinion in Genetics and Development, 2005, 15, 116-124.	3.3	660
41	Physical Biology of the Cell. , 0, , .		391