Lizhen Huang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4890861/lizhen-huang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	772	13	27
papers	citations	h-index	g-index
27	944	10.5	4.29
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
25	High performance near-infrared phototransistors enhanced electron trapping effect. <i>Chemical Communications</i> , 2021 , 57, 12123-12126	5.8	О
24	Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. <i>Advanced Materials</i> , 2021 , 33, e2007041	24	23
23	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. <i>Nature Communications</i> , 2021 , 12, 4937	17.4	4
22	High performance gas sensors with dual response based on organic ambipolar transistors. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1584-1592	7.1	4
21	Breath figure-derived porous semiconducting films for organic electronics. <i>Science Advances</i> , 2020 , 6, eaaz1042	14.3	33
20	Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 48854-48860	9.5	7
19	Microstructured Ultrathin Organic Semiconductor Film via Dip-Coating: Precise Assembly and Diverse Applications. <i>Accounts of Materials Research</i> , 2020 , 1, 201-212	7.5	4
18	Lithography Compatible, Flexible Micro-Organic Light-Emitting Diodes by Template-Directed Growth. <i>Small Methods</i> , 2019 , 3, 1800508	12.8	14
17	Gas-Sensing Performance and Operation Mechanism of Organic Econjugated Materials. <i>ChemPlusChem</i> , 2019 , 84, 1222-1234	2.8	36
16	An ammonia detecting mechanism for organic transistors as revealed by their recovery processes. <i>Nanoscale</i> , 2018 , 10, 8832-8839	7.7	19
15	Fast growth of monolayer organic 2D crystals and their application in organic transistors. <i>Organic Electronics</i> , 2018 , 58, 38-45	3.5	13
14	Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells. <i>ACS Applied Materials & Discourt & Discour</i>	:3 ⁹ 7 ⁵ 42	403
13	Positioning growth of NPB crystalline nanowires on the PTCDA nanocrystal template. <i>Nanoscale</i> , 2018 , 10, 10262-10267	7.7	7
12	Quasi-Layer-by-Layer Growth of Pentacene on HOPG and Au Surfaces. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 25043-25051	3.8	4
11	An Ultrasensitive Organic Semiconductor NO Sensor Based on Crystalline TIPS-Pentacene Films. <i>Advanced Materials</i> , 2017 , 29, 1703192	24	104
10	Micro organic light-emitting diodes fabricated through area-selective growth. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2606-2612	7.8	9
9	Growth of Highly Oriented Ultrathin Crystalline Organic Microstripes: Effect of Alkyl Chain Length. <i>Langmuir</i> , 2016 , 32, 9109-17	4	10

LIST OF PUBLICATIONS

8	Organic Semiconductors based on Dyes and Color Pigments. <i>Advanced Materials</i> , 2016 , 28, 3615-45	24	298
7	Electrical gas sensors based on structured organic ultra-thin films and nanocrystals on solid state substrates. <i>Nanoscale Horizons</i> , 2016 , 1, 383-393	10.8	39
6	Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors. <i>Nanoscale</i> , 2016 , 8, 3954-61	7.7	19
5	Foreign Particle Promoted Crystalline Nucleation for Growing High-Quality Ultrathin Rubrene Films. <i>Small</i> , 2016 , 12, 4086-92	11	5
4	Influence of Solid-State Packing of Dipolar Merocyanine Dyes on Transistor and Solar Cell Performances. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13524-34	16.4	58
3	Organic Thin Film Transistors Based on Highly Dipolar DonorAcceptor Polymethine Dyes. <i>Advanced Functional Materials</i> , 2015 , 25, 44-57	15.6	37
2	Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance. <i>Langmuir</i> , 2015 , 31, 9748-61	4	12
1	Organic Electronics: Organic Thin Film Transistors Based on Highly Dipolar DonorAcceptor Polymethine Dyes (Adv. Funct. Mater. 1/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 167-167	15.6	