Junwei Sha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4890837/publications.pdf Version: 2024-02-01

LUNWEI SHA

#	Article	IF	CITATIONS
1	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	7.3	435
2	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	10.2	369
3	Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369.	7.3	180
4	Three-Dimensional Printed Graphene Foams. ACS Nano, 2017, 11, 6860-6867.	7.3	172
5	CeO _{<i>x</i>} -Decorated NiFe-Layered Double Hydroxide for Efficient Alkaline Hydrogen Evolution by Oxygen Vacancy Engineering. ACS Applied Materials & Interfaces, 2018, 10, 35145-35153.	4.0	156
6	A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. Journal of Materials Chemistry A, 2020, 8, 11617-11625.	5.2	130
7	Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates. ACS Nano, 2016, 10, 1411-1416.	7.3	117
8	Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2017, 9, 26840-26847.	4.0	103
9	Graphene Carbon Nanotube Carpets Grown Using Binary Catalysts for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2724-2733.	7.3	91
10	Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 219-227.	2.6	75
11	Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications. Nano Today, 2019, 29, 100796.	6.2	64
12	Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems. Materials Chemistry Frontiers, 2019, 3, 2221-2245.	3.2	63
13	In situ synthesis of ultrathin 2-D TiO2 with high energy facets on graphene oxide for enhancing photocatalytic activity. Carbon, 2014, 68, 352-359.	5.4	56
14	A large ultrathin anatase TiO2 nanosheet/reduced graphene oxide composite with enhanced lithium storage capability. Journal of Materials Chemistry A, 2014, 2, 8893.	5.2	56
15	In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 65-71.	2.6	52
16	Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. Journal of Catalysis, 2020, 382, 204-211.	3.1	51
17	Three-Dimensional Rebar Graphene. ACS Applied Materials & amp; Interfaces, 2017, 9, 7376-7384.	4.0	46
18	Enhanced Hydrogen Evolution Reaction Performance of NiCo ₂ P by Filling Oxygen Vacancies by Phosphorus in Thin-Coating CeO ₂ . ACS Applied Materials & amp; Interfaces, 2019, 11, 32460-32468.	4.0	46

Junwei Sha

#	Article	IF	CITATIONS
19	Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method. International Journal of Fatigue, 2019, 121, 272-280.	2.8	43
20	Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. Journal of Electroanalytical Chemistry, 2019, 855, 113627.	1.9	42
21	Graphene Oxide-Assisted Synthesis of Microsized Ultrathin Single-Crystalline Anatase TiO ₂ Nanosheets and Their Application in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 2495-2504.	4.0	40
22	Data-driven analysis on thermal effects and temperature changes of lithium-ion battery. Journal of Power Sources, 2021, 482, 228983.	4.0	40
23	"Threeâ€inâ€One―Multi‣evel Design of MoS ₂ â€Based Anodes for Enhanced Sodium Storage from Atomic to Macroscopic Level. Advanced Functional Materials, 2022, 32, .	: 7.8	40
24	Three-dimensional graphene anchored Fe2O3@C core-shell nanoparticles as supercapacitor electrodes. Journal of Alloys and Compounds, 2017, 696, 956-963.	2.8	39
25	Ultra-Stiff Graphene Foams as Three-Dimensional Conductive Fillers for Epoxy Resin. ACS Nano, 2018, 12, 11219-11228.	7.3	37
26	Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017, 123, 433-439.	5.4	35
27	A three-dimensional sponge of graphene nanoribbons crosslinked by Fe ₃ O ₄ nanoparticles for Li ⁺ storage. Journal of Materials Chemistry A, 2017, 5, 23592-23599.	5.2	32
28	Graphene nanoribbons wrapping double nanoshells of SnO2@TiO2 for high lithium storage. Journal of Power Sources, 2016, 336, 298-306.	4.0	31
29	Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries. Energy Storage Materials, 2022, 44, 285-295.	9.5	31
30	Covalently bonded 3D rebar graphene foam for ultrahigh-areal-capacity lithium-metal anodes by in-situ loose powder metallurgy synthesis. Carbon, 2020, 158, 536-544.	5.4	22
31	Rivet Graphene. ACS Nano, 2016, 10, 7307-7313.	7.3	20
32	Single-Atom Cobalt Supported on Nitrogen-Doped Three-Dimensional Carbon Facilitating Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25337-25347.	4.0	20
33	Synthesis of novel carbon nano-chains and their application as supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16268-16275.	5.2	16
34	Compressionâ€compression fatigue performance of aluminium matrix composite foams reinforced by carbon nanotubes. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 744-756.	1.7	16
35	Manipulating mechanical properties of graphene/Al composites by an in-situ synthesized hybrid reinforcement strategy. Journal of Materials Science and Technology, 2022, 123, 13-25.	5.6	14
36	Predicting battery life with early cyclic data by machine learning. Energy Storage, 2019, 1, e98.	2.3	13

Junwei Sha

#	Article	IF	CITATIONS
37	Crushing behavior and energy absorption property of carbon nanotube-reinforced aluminum composite foam-filled 6061 aluminum alloy tubes. Journal of Materials Science, 2020, 55, 7910-7926.	1.7	10
38	Boosting the charge transfer efficiency of metal oxides/carbon nanotubes composites through interfaces control. Journal of Power Sources, 2021, 489, 229501.	4.0	9
39	Nitrogen modification enhances the electrocatalytic overall water splitting of NiFe layered double hydroxides in alkaline media. Materials Letters, 2020, 263, 127162.	1.3	7
40	Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
41	In-situ growth of Fe nanoparticles encapsulated by carbon onions with controllable thickness on graphene nanoribbon-reinforced graphene. Carbon, 2021, 174, 423-429.	5.4	5
42	W Clusters <i>In Situ</i> Assisted Synthesis of Layered Carbon Nanotube Arrays on Graphene Achieving High-Rate Performance. ACS Applied Materials & Interfaces, 2021, 13, 19117-19127.	4.0	5
43	Bi-functional modular graphene network with high rate and cycling performance. Journal of Power Sources, 2021, 504, 230075.	4.0	5
44	Controllable Design of Structural and Mechanical Behaviors of Al–Si Foams by Powder Metallurgy Foaming. Advanced Engineering Materials, 2022, 24, .	1.6	5
45	Anionic and Cationic Co-Substitutions of S into Vertically Aligned WTe ₂ Nanosheets as Catalysis for Hydrogen Evolution under Alkaline Conditions. ACS Applied Nano Materials, 2022, 5, 7123-7131.	2.4	3
46	Balancing Strength and Ductility in Al Matrix Composites Reinforced by Few-Layered MoS2 through In-Situ Formation of Interfacial Al12Mo. Materials, 2021, 14, 3561.	1.3	2
47	In Situ Internal Strengthened Carbon Nanotube Carpets on Graphene for Anti-Icing Application. ACS Applied Nano Materials, 2021, 4, 10952-10959.	2.4	2
48	Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting. Acta Metallurgica Sinica (English Letters), 0, , .	1.5	2
49	Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries. Journal of Energy Chemistry, 2022, 73, 268-276.	7.1	2