List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4890736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: MSC-Derived Extracellular Vesicles and Secreted Factors as "Cell-Free―Therapeutic Alternatives in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2022, 10, 842128.	2.0	4
2	Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1777.	3.3	6
3	A real-time integrated framework to support clinical decision making for covid-19 patients. Computer Methods and Programs in Biomedicine, 2022, 217, 106655.	2.6	8
4	Human Amniotic Membrane for the Treatment of Cryptoglandular Anal Fistulas. Journal of Clinical Medicine, 2022, 11, 1350.	1.0	5
5	Clinical Application of Adipose Derived Stem Cells for the Treatment of Aseptic Non-Unions: Current Stage and Future Perspectives—Systematic Review. International Journal of Molecular Sciences, 2022, 23, 3057.	1.8	11
6	INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. International Journal of Molecular Sciences, 2022, 23, 3217.	1.8	9
7	HIPGEN: a randomized, multicentre phase III study using intramuscular PLacenta-eXpanded stromal cells therapy for recovery following hip fracture arthroplasty. Bone & Joint Open, 2022, 3, 340-347.	1.1	2
8	Assessment of the in vivo biofunctionality of a biomimetic hybrid scaffold for osteochondral tissue regeneration. Biotechnology and Bioengineering, 2021, 118, 465-480.	1.7	8
9	Extracellular Vesicles From Perinatal Cells for Anti-inflammatory Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 637737.	2.0	15
10	The Role of B Cells in PE Pathophysiology: A Potential Target for Perinatal Cell-Based Therapy?. International Journal of Molecular Sciences, 2021, 22, 3405.	1.8	6
11	Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Translational Medicine, 2021, 10, 1044-1062.	1.6	46
12	Basic and Preclinical Research for Personalized Medicine. Journal of Personalized Medicine, 2021, 11, 354.	1.1	8
13	Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652970.	2.0	50
14	Human Amniotic Mesenchymal Stromal Cells Support the ex Vivo Expansion of Cord Blood Hematopoietic Stem Cells. Stem Cells Translational Medicine, 2021, 10, 1516-1529.	1.6	5
15	Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes, 2021, 12, 1073.	1.0	7
16	Editorial: Perinatal Derivatives and the Road to Clinical Translation, Volume I. Frontiers in Bioengineering and Biotechnology, 2021, 9, 741156.	2.0	0
17	Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111989.	2.5	6
18	A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19. Scientific Reports, 2021, 11, 21136.	1.6	14

#	Article	IF	CITATIONS
19	CM from intact hAM: an easily obtained product with relevant implications for translation in regenerative medicine. Stem Cell Research and Therapy, 2021, 12, 540.	2.4	15
20	Immunohistochemical detection of "ex novo―HLAâ€ĐR in tumor cells determines clinical outcome in laryngeal cancer patients. Hla, 2021, , .	0.4	1
21	Shaping modern human skull through epigenetic, transcriptional and post-transcriptional regulation of the RUNX2 master bone gene. Scientific Reports, 2021, 11, 21316.	1.6	8
22	Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy, 2020, 16, 28-37.	4.3	96
23	Autophagy is Activated In Vivo during Trimethyltin-Induced Apoptotic Neurodegeneration: A Study in the Rat Hippocampus. International Journal of Molecular Sciences, 2020, 21, 175.	1.8	13
24	Human amniotic stem cells improve hepatic microvascular dysfunction and portal hypertension in cirrhotic rats. Liver International, 2020, 40, 2500-2514.	1.9	20
25	Graphene Quantum Dots' Surface Chemistry Modulates the Sensitivity of Glioblastoma Cells to Chemotherapeutics. International Journal of Molecular Sciences, 2020, 21, 6301.	1.8	32
26	The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 554530.	2.0	11
27	Amniotic MSCs reduce pulmonary fibrosis by hampering lung B-cell recruitment, retention, and maturation. Stem Cells Translational Medicine, 2020, 9, 1023-1035.	1.6	41
28	Graphene Oxide Nano-Concentrators Selectively Modulate RNA Trapping According to Metal Cations in Solution. Frontiers in Bioengineering and Biotechnology, 2020, 8, 421.	2.0	8
29	B Lymphocytes as Targets of the Immunomodulatory Properties of Human Amniotic Mesenchymal Stromal Cells. Frontiers in Immunology, 2020, 11, 1156.	2.2	33
30	Priming with inflammatory cytokines is not a prerequisite to increase immune-suppressive effects and responsiveness of equine amniotic mesenchymal stromal cells. Stem Cell Research and Therapy, 2020, 11, 99.	2.4	10
31	The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 447.	1.8	27
32	GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. International Journal of Molecular Sciences, 2020, 21, 4356.	1.8	18
33	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	4.8	28
34	Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells, 2020, 9, 127.	1.8	55
35	miRNA Reference Genes in Extracellular Vesicles Released from Amniotic Membrane-Derived Mesenchymal Stromal Cells. Pharmaceutics, 2020, 12, 347.	2.0	12
36	Perinatal Cells: A Promising COVID-19 Therapy?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619980.	2.0	3

#	Article	IF	CITATIONS
37	Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610544.	2.0	68
38	Shaping the Future of Perinatal Cells: Lessons From the Past and Interpretations of the Present. Frontiers in Bioengineering and Biotechnology, 2019, 7, 75.	2.0	19
39	Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells, 2019, 8, 1401.	1.8	19
40	Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- and Bone Marrow-Derived MSCs in a Dose-Dependent Manner. Stem Cells International, 2019, 2019, 1-11.	1.2	8
41	Conditioned medium from amniotic cells protects striatal degeneration and ameliorates motor deficits in the R6/2 mouse model of Huntington's disease. Journal of Cellular and Molecular Medicine, 2019, 23, 1581-1592.	1.6	45
42	Effect of human amniotic epithelial cells on proâ€fibrogenic resident hepatic cells in a rat model of liver fibrosis. Journal of Cellular and Molecular Medicine, 2018, 22, 1202-1213.	1.6	28
43	BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone, 2018, 112, 58-70.	1.4	12
44	Placenta-Derived Cells for Acute Brain Injury. Cell Transplantation, 2018, 27, 151-167.	1.2	12
45	Placental Cells and Derivatives. Cell Transplantation, 2018, 27, 1-2.	1.2	18
46	Immunological and Differentiation Properties of Amniotic Cells Are Retained After Immobilization in Pectin Gel. Cell Transplantation, 2018, 27, 70-76.	1.2	9
47	The Immunomodulatory Properties of Amniotic Cells. Cell Transplantation, 2018, 27, 31-44.	1.2	85
48	Mapping of the Human Placenta. Cell Transplantation, 2018, 27, 12-22.	1.2	34
49	Therapeutic potential of hAECs for early Achilles tendon defect repair through regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1594-e1608.	1.3	37
50	Human acellular amniotic membrane implantation for lower third nasal reconstruction: a promising therapy to promote wound healing. Burns and Trauma, 2018, 6, 34.	2.3	24
51	Comparison of the Proliferation and Differentiation Potential of Human Urine-, Placenta Decidua Basalis-, and Bone Marrow-Derived Stem Cells. Stem Cells International, 2018, 2018, 1-11.	1.2	41
52	Incorporating placental tissue in cord blood banking for stem cell transplantation. Expert Review of Hematology, 2018, 11, 649-661.	1.0	5
53	Epithelial and Mesenchymal Stromal Cells From the Amniotic Membrane. , 2018, , 147-155.		1
54	Cardiac Restoration Stemming From the Placenta Tree: Insights From Fetal and Perinatal Cell Biology. Frontiers in Physiology, 2018, 9, 385.	1.3	15

#	Article	IF	CITATIONS
55	Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation. PLoS ONE, 2018, 13, e0191489.	1.1	37
56	The dichotomy of placenta-derived cells in cancer growth. Placenta, 2017, 59, 154-162.	0.7	15
57	Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives. Stem Cell Reviews and Reports, 2017, 13, 575-586.	5.6	61
58	New frontiers in placenta stem cell research, translation, and clinical application. Placenta, 2017, 59, 73.	0.7	1
59	Human amniotic epithelial cells: evaluation of survival during their hepatic differentiation. Placenta, 2017, 57, 326.	0.7	0
60	ls Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine?. Cell Transplantation, 2017, 26, 531-539.	1.2	66
61	Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2895-2911.	1.3	90
62	Should hypoxia preconditioning become the standardized procedure for bone marrow MSCs preparation for clinical use?. Stem Cells, 2016, 34, 1992-1993.	1.4	19
63	Antifibrotic Effects of Human Amniotic Membrane Transplantation in Established Biliary Fibrosis Induced in Rats. Cell Transplantation, 2016, 25, 2245-2257.	1.2	33
64	Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Critical Care Medicine, 2016, 44, e1118-e1131.	0.4	66
65	Isolation, Culture, and Phenotypic Characterization of Mesenchymal Stromal Cells from the Amniotic Membrane of the Human Term Placenta. Methods in Molecular Biology, 2016, 1416, 233-244.	0.4	33
66	Amniotic mesenchymal cells from preâ€eclamptic placentae maintain immunomodulatory features as healthy controls. Journal of Cellular and Molecular Medicine, 2016, 20, 157-169.	1.6	41
67	Mesenchymal Stromal Cells Protect Endothelial Cells from Cytotoxic T Lymphocyteâ€Induced Lysis. Scandinavian Journal of Immunology, 2016, 84, 158-164.	1.3	7
68	Internalization of nanopolymeric tracers does not alter characteristics of placental cells. Journal of Cellular and Molecular Medicine, 2016, 20, 1036-1048.	1.6	4
69	Equine Amniotic Microvesicles and Their Anti-Inflammatory Potential in a Tenocyte Model In Vitro. Stem Cells and Development, 2016, 25, 610-621.	1.1	46
70	The Immunomodulatory Features of Mesenchymal Stromal Cells Derived from Wharton's Jelly, Amniotic Membrane, and Chorionic Villi In Vitro and In Vivo Data. , 2016, , 91-128.		9
71	The Use of Placenta-Derived Cells in Autoimmune Disorders. , 2016, , 161-179.		0
72	Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Research and Therapy, 2015, 6, 155.	2.4	60

#	Article	IF	CITATIONS
73	Human Amniotic Membrane-Derived Mesenchymal and Epithelial Cells Exert Different Effects on Monocyte-Derived Dendritic Cell Differentiation and Function. Cell Transplantation, 2015, 24, 1733-1752.	1.2	89
74	Distinct In Vitro Properties of Embryonic and Extraembryonic Fibroblast-Like Cells are Reflected in their in Vivo Behavior following Grafting in the Adult Mouse Brain. Cell Transplantation, 2015, 24, 223-233.	1.2	6
75	The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 162.	2.0	122
76	Biomimetic hybrid scaffolds for osteo-chondral tissue repair: Design and osteogenic differentiation of human placenta-derived cells (hPDC). , 2015, 2015, 1753-6.		3
77	How far are we from the clinical use of placental-derived mesenchymal stem cells?. Expert Opinion on Biological Therapy, 2015, 15, 613-617.	1.4	24
78	Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues. Stem Cell Reviews and Reports, 2015, 11, 570-585.	5.6	26
79	Amniotic Membrane Mesenchymal Cells-Derived Factors Skew T Cell Polarization Toward Treg and Downregulate Th1 and Th17 Cells Subsets. Stem Cell Reviews and Reports, 2015, 11, 394-407.	5.6	108
80	Human amniotic epithelial cells: Proliferation and apoptosis during their hepatic differentiation. Placenta, 2015, 36, 509.	0.7	3
81	In vivo tracking of human placenta derived mesenchymal stem cells in nude mice via 14C-TdR labeling. BMC Biotechnology, 2015, 15, 55.	1.7	14
82	Stem Properties of Amniotic Membrane-Derived Cells. , 2015, , 57-76.		0
83	Multipotent Mesenchymal Stromal Cell-Based Therapies: Regeneration Versus Repair. , 2015, , 3-16.		1
84	Placental Mesenchymal Stromal Cells Derived from Blood Vessels or Avascular Tissues: What Is the Better Choice to Support Endothelial Cell Function?. Stem Cells and Development, 2015, 24, 115-131.	1.1	40
85	Placenta-Derived Cells and Their Therapeutic Applications. , 2015, , 773-794.		Ο
86	Target-antigen Detection and Localization of Human Amniotic-derived Cells after in Utero Transplantation in Rats. Annals of Clinical and Laboratory Science, 2015, 45, 270-7.	0.2	2
87	Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice—specificity of the effects and insights into possible mechanisms. Cytotherapy, 2014, 16, 17-32.	0.3	60
88	Feasibility and potential of in utero foetal membrane-derived cell transplantation. Cell and Tissue Banking, 2014, 15, 241-249.	0.5	4
89	Amnion: a versatile tissue and cell source in tissue repair and regeneration. Cell and Tissue Banking, 2014, 15, 175-175.	0.5	1
90	Gestational stage affects amniotic epithelial cells phenotype, methylation status, immunomodulatory and stemness properties. Stem Cell Reviews and Reports, 2014, 10, 725-741.	5.6	49

#	Article	IF	CITATIONS
91	Therapeutic Effect of Human Amniotic Membrane–Derived Cells on Experimental Arthritis and Other Inflammatory Disorders. Arthritis and Rheumatology, 2014, 66, 327-339.	2.9	78
92	Placental Stem/Progenitor Cells: Isolation and Characterization. , 2014, , 141-157.		11
93	Comparative Analysis of Human Amniotic Membrane Graft versus Contact Lenses in Symptomatic Bullous Keratopathy. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	1
94	Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell and Tissue Banking, 2013, 14, 475-488.	0.5	82
95	Conditioned Medium from Horse Amniotic Membrane-Derived Multipotent Progenitor Cells: Immunomodulatory Activity In Vitro and First Clinical Application in Tendon and Ligament Injuries In Vivo. Stem Cells and Development, 2013, 22, 3015-3024.	1.1	76
96	The Potential Role of Microvesicles in Mesenchymal Stem Cell-Based Therapy. Stem Cells and Development, 2013, 22, 841-844.	1.1	19
97	Soluble Factors of Amnion-Derived Cells in Treatment of Inflammatory and Fibrotic Pathologies. Current Stem Cell Research and Therapy, 2013, 8, 6-14.	0.6	67
98	Anti-Inflammatory Effects of Adult Stem Cells in Sustained Lung Injury: A Comparative Study. PLoS ONE, 2013, 8, e69299.	1.1	87
99	Mesenchymal Stem/Stromal Cells: A New ''Cells as Drugs'' Paradigm. Efficacy and Critical Aspects in Cell Therapy. Current Pharmaceutical Design, 2013, 19, 2459-2473.	0.9	144
100	Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy, 2012, 14, 153-161.	0.3	88
101	Amniotic membraneâ€derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. Journal of Cellular and Molecular Medicine, 2012, 16, 2208-2218.	1.6	72
102	Amnion-Derived Mesenchymal Stromal Cells Show Angiogenic Properties but Resist Differentiation into Mature Endothelial Cells. Stem Cells and Development, 2012, 21, 1309-1320.	1.1	57
103	Umbilical Cord Versus Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells and Development, 2012, 21, 2900-2903.	1.1	37
104	Redirecting T Cells to Ewing's Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection. PLoS ONE, 2012, 7, e31210.	1.1	101
105	Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity. PLoS ONE, 2012, 7, e46956.	1.1	110
106	Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 622-635.	1.3	92
107	Simultaneous histochemical and immunohistochemical staining as a simple tool to identify mast cells within CD117â€positive cell populations. Histopathology, 2012, 60, 655-657.	1.6	0
108	Human term placental cells: phenotype, properties and new avenues in regenerative medicine. International Journal of Molecular and Cellular Medicine, 2012, 1, 64-74.	1.1	36

#	Article	IF	CITATIONS
109	Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. 1993. Journal of Immunology, 2012, 188, 2936-47.	0.4	7
110	Amniotic Membrane Application Reduces Liver Fibrosis in a Bile Duct Ligation Rat Model. Cell Transplantation, 2011, 20, 441-453.	1.2	80
111	Comparison of three distinct methods for the detection of circulating tumor cells in colorectal cancer patients. Oncology Reports, 2011, 25, 1669-703.	1.2	29
112	Human amniotic epithelial cells express melatonin receptor MT1, but not melatonin receptor MT2: a new perspective to neuroprotection. Journal of Pineal Research, 2011, 50, 272-280.	3.4	48
113	Review: Preclinical studies on placenta-derived cells and amniotic membrane: An update. Placenta, 2011, 32, S186-S195.	0.7	83
114	From fetal development and beyond: A continued role for placenta in sustaining life?. Placenta, 2011, 32, S283-S284.	0.7	8
115	Amniotic membrane and amniotic cells: Potential therapeutic tools to combat tissue inflammation and fibrosis?. Placenta, 2011, 32, S320-S325.	0.7	132
116	In Utero Hematopoietic Stem-Cell Transplantation — A Match for Mom. New England Journal of Medicine, 2011, 364, 1174-1175.	13.9	3
117	SAP-Mediated Inhibition of Diacylglycerol Kinase α Regulates TCR-Induced Diacylglycerol Signaling. Journal of Immunology, 2011, 187, 5941-5951.	0.4	43
118	Placenta as a Source of Stem Cells and as a Key Organ for Fetomaternal Tolerance. , 2011, , 11-23.		6
119	Application of computer assisted image analysis for identifying and quantifying liver fibrosis in a experimental model. Journal of Computational Interdisciplinary Sciences, 2011, 2, .	0.3	2
120	International Placenta Stem Cell Society: Planting the Seed for Placenta Stem Cell Research. Cell Transplantation, 2010, 19, 507-508.	1.2	5
121	Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results. Journal of Materials Science: Materials in Medicine, 2010, 21, 1005-1011.	1.7	28
122	Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical Studies, and Regulatory Aspects at the Round Table. Stem Cells and Development, 2010, 19, 143-154.	1.1	127
123	Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine?. Regenerative Medicine, 2009, 4, 275-291.	0.8	149
124	Amnion: A Potent Graft Source for Cell Therapy in Stroke. Cell Transplantation, 2009, 18, 111-118.	1.2	83
125	Transplantation of Allogeneic and Xenogeneic Placenta-Derived Cells Reduces Bleomycin-Induced Lung Fibrosis. Cell Transplantation, 2009, 18, 405-422.	1.2	225
126	Amniotic Membrane Patching Promotes Ischemic Rat Heart Repair. Cell Transplantation, 2009, 18, 1147-1159.	1.2	86

8

#	Article	IF	CITATIONS
127	Amniotic Mesenchymal Tissue Cells Inhibit Dendritic Cell Differentiation of Peripheral Blood and Amnion Resident Monocytes. Cell Transplantation, 2009, 18, 899-914.	1.2	125
128	Placenta-derived stem cells: new hope for cell therapy?. Cytotechnology, 2008, 58, 33-42.	0.7	95
129	Human Amnion Mesenchyme Harbors Cells with Allogeneic T-Cell Suppression and Stimulation Capabilities. Stem Cells, 2008, 26, 182-192.	1.4	192
130	Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells, 2008, 26, 300-311.	1.4	921
131	Diacylglycerol kinase-α phosphorylation by Src on Y335 is required for activation, membrane recruitment and Hgf-induced cell motility. Oncogene, 2008, 27, 942-956.	2.6	50
132	Molecular signature detection of circulating tumor cells using a panel of selected genes. Cancer Letters, 2008, 263, 267-279.	3.2	53
133	Cutting Edge: A Hypomorphic Mutation in Igβ (CD79b) in a Patient with Immunodeficiency and a Leaky Defect in B Cell Development. Journal of Immunology, 2007, 179, 2055-2059.	0.4	74
134	Diacylglycerol Kinase-α Mediates Hepatocyte Growth Factor-induced Epithelial Cell Scatter by Regulating Rac Activation and Membrane Ruffling. Molecular Biology of the Cell, 2007, 18, 4859-4871.	0.9	33
135	Caspase-8 dependent apoptosis induction in malignant myeloid cells by TLR stimulation in the presence of IFN-alpha. Leukemia Research, 2007, 31, 1729-1735.	0.4	15
136	Isolation and characterization of mesenchymal cells from human fetal membranes. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 296-305.	1.3	350
137	Use of highly sensitive mitochondrial probes to detect microchimerism in xenotransplantation models. Xenotransplantation, 2006, 13, 80-85.	1.6	13
138	Genistein Affects Adipose Tissue Deposition in a Dose-Dependent and Gender-Specific Manner. Endocrinology, 2006, 147, 5740-5751.	1.4	178
139	In Utero Transplantation of Human Cord Blood Cells into Rabbits. Transplantation, 2005, 80, 282-283.	0.5	3
140	Conditioning of Neonatal Pigs Using Low-Dose Chemotherapy and Murine Fetal Tissue before Murine Hybridoma Transplantation. Transplantation, 2005, 79, 349-352.	0.5	1
141	Target-specific action of organochlorine compounds in reproductive and nonreproductive tissues of estrogen-reporter male mice. Toxicology and Applied Pharmacology, 2004, 201, 137-148.	1.3	19
142	Engraftment Potential of Human Amnion and Chorion Cells Derived from Term Placenta. Transplantation, 2004, 78, 1439-1448.	0.5	318
143	Differential methylation pattern of the X-linked lymphoproliferative (XLP) disease gene SH2D1A correlates with the cell lineage-specific transcription. Immunogenetics, 2003, 55, 116-121.	1.2	10
144	SLAM-associated Protein Deficiency Causes Imbalanced Early Signal Transduction and Blocks Downstream Activation in T Cells from X-linked Lymphoproliferative Disease Patients. Journal of Biological Chemistry, 2003, 278, 29593-29599.	1.6	24

#	Article	IF	CITATIONS
145	Suppression of early T-cell–receptor-triggered cellular activation by the Janus kinase 3 inhibitor WHI-P-154. Transplantation, 2003, 75, 1864-1872.	0.5	24
146	Normal monocyte-derived dendritic cell function in patients with langerhans-cell-histiocytosis. Medical and Pediatric Oncology, 2002, 39, 181-186.	1.0	5
147	Analysis of SH2D1A mutations in patients with severe Epstein-Barr virus infections, Burkitt's lymphoma, and Hodgkin's lymphoma. Annals of Hematology, 2002, 81, 441-447.	0.8	14
148	Bacterial metabolite interference with maturation of human monocyte-derived dendritic cells. Journal of Leukocyte Biology, 2002, 71, 238-46.	1.5	39
149	Antiâ€inflammatory effects of sodium butyrate on human monocytes: potent inhibition of ILâ€12 and upâ€regulation of ILâ€10 production. FASEB Journal, 2000, 14, 2380-2382.	0.2	389
150	Mutation analysis by a nonâ€radioactive singleâ€strand conformation polymorphism assay in nine families with Xâ€linked severe combined immunodeficiency (SCIDX1). British Journal of Haematology, 1998, 101, 582-587.	1.2	28
151	X-Linked Wiskott–Aldrich Syndrome in a Girl. New England Journal of Medicine, 1998, 338, 291-295.	13.9	98
152	X-Linked Wiskott–Aldrich Syndrome in a Girl. New England Journal of Medicine, 1998, 338, 1850-1851.	13.9	1
153	A PCR-based non-radioactive X-chromosome inactivation assay for genetic counseling in X-linked primary immunodeficiencies. Life Sciences, 1997, 61, 1405-1411.	2.0	28
154	Expression of Wiskott-Aldrich Syndrome Protein (WASP) Gene During Hematopoietic Differentiation. Blood, 1997, 90, 70-75.	0.6	85
155	Expression of Wiskott-Aldrich Syndrome Protein (WASP) Gene During Hematopoietic Differentiation. Blood, 1997, 90, 70-75.	0.6	6
156	B-cell-specific demethylation of BTK, the defective gene in X-linked agammaglobulinemia. Immunogenetics, 1995, 42, 129-35.	1.2	6
157	High prevalence of nonsense, frame shift, and splice-site mutations in 16 patients with full-blown Wiskott-Aldrich syndrome. Blood, 1995, 86, 3648-3654.	0.6	67
158	Mutation analysis in Wiskott Aldrich syndrome on chorionic villus DNA. Lancet, The, 1995, 346, 641-642.	6.3	8
159	X-linked agammaglobulinemia, growth hormone deficiency and delay of growth and puberty. Acta Paediatrica, International Journal of Paediatrics, 1994, 83, 99-102.	0.7	13
160	A Point Mutation in the SH2 Domain of Bruton's Tyrosine Kinase in Atypical X-Linked Agammaglobulinemia. New England Journal of Medicine, 1994, 330, 1488-1491.	13.9	149
161	Screening of genomic DNA to identify mutations in the gene for Bruton's tyrosine kinase. Human Molecular Genetics, 1994, 3, 1751-1756.	1.4	96
162	The genomic structure of human BTK, the defective gene in X-linked agammaglobulinemia. Immunogenetics, 1994, 40, 319-324.	1.2	50

#	Article	IF	CITATIONS
163	X-Linked Agammaglobulinemia: New Approaches to Old Questions based on the Identification of the Defective Gene. Immunological Reviews, 1994, 138, 5-21.	2.8	86
164	Linkage Analysis and Physical Mapping near the Gene for X-Linked Agammaglobulinemia at Xq22. Genomics, 1993, 15, 342-349.	1.3	52
165	Application of Molecular Analysis to Genetic Counseling in the Wiskott–Aldrich Syndrome (WAS). DNA and Cell Biology, 1993, 12, 645-649.	0.9	4
166	Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell, 1993, 72, 279-290.	13.5	1,295
167	X-Linked Agammaglobulinemia: Updated Criteria for Diagnosis. , 1993, , 545-552.		0
168	Lipid peroxidation, phosphoinositide turnover and protein kinase C activation in human platelets treated with anthracyclines and their complexes with Fe(III). Biochemical Pharmacology, 1992, 43, 1521-1527.	2.0	8
169	Wiskott-Aldrich syndrome carrier detection with the hypervariable marker M27β. Human Genetics, 1992, 89, 223-228.	1.8	9
170	Carrier detection in X-linked adrenoleukodystrophy by determination of very long chain fatty acid levels and by linkage analysis. European Journal of Pediatrics, 1992, 151, 761-763.	1.3	3
171	Atypical Wiskott-Aldrich syndrome in a girl. Blood, 1992, 80, 1264-1269.	0.6	34
172	Presentation of Wiskott Aldrich syndrome as isolated thrombocytopenia [letter; comment]. Blood, 1991, 77, 1125-1126.	0.6	20
173	Analysis of X-chromosome inactivation in X-linked immunodeficiency with hyper-IgM (HIGM1): evidence for involvement of different hematopoietic cell lineages. Human Genetics, 1991, 88, 130-4.	1.8	15
174	Analysis of X-chromosome inactivation and presumptive expression of the Wiskott-Aldrich syndrome (WAS) gene in hematopoietic cell lineages of a thrombocytopenic carrier female of WAS. Human Genetics, 1991, 88, 237-41.	1.8	13