Hailing Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4890694/publications.pdf

Version: 2024-02-01

361413 345221 2,141 37 20 36 citations h-index g-index papers 38 38 38 3043 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preparation of HKUST-1/PEI mixed-matrix membranes: Adsorption-diffusion coupling control of small gas molecules. Journal of Membrane Science, 2022, 643, 120070.	8.2	23
2	The role of Nb2O5 in controlling metal-acid sites of CoMoS \hat{l}^3 -Al2O3 catalyst for the enhanced hydrodeoxygenation of guaiacol into hydrocarbons. Journal of Catalysis, 2022, 407, 19-28.	6.2	15
3	Passivated Surface of High Aluminum Containing ZSM-5 by Silicalite-1: Synthesis and Application in Dehydration Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 4839-4848.	6.7	8
4	Efficient hydrodesulfurization of dibenzothiophene over core–shell Ni/Al ₂ O ₃ @SOD and Mo/Al ₂ O ₃ composite catalysts. Inorganic Chemistry Frontiers, 2022, 9, 3384-3391.	6.0	1
5	Transformation of Discrete Amorphous Aluminosilicate Nanoparticles into Nanosized Zeolites. Advanced Materials Interfaces, 2021, 8, 2000634.	3.7	6
6	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	38.1	47
7	Interfacial polymerization of MOF "monomers―to fabricate flexible and thin membranes for molecular separation with ultrafast water transport. Journal of Materials Chemistry A, 2021, 9, 17528-17537.	10.3	16
8	Boosting the Pseudocapacitive and High Massâ€Loaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Advanced Functional Materials, 2021, 31, 2007636.	14.9	53
9	Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2021, 286, 119907.	20.2	37
10	Effect of Sodium Concentration on the Synthesis of Faujasite by Two-step Synthesis Procedure. Chemical Research in Chinese Universities, 2021, 37, 1137.	2.6	1
11	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 3840-3845.	13.8	109
12	Micelles of Mesoporous Silica with Inserted Iron Complexes as a Platform for Constructing Efficient Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Electrocatalysts for Oxygen Reduction.	8.0	17
13	Green synthesis of hierarchical carbon coupled with Fe3O4/Fe2C as an efficient catalyst for the oxygen reduction reaction. Materials Advances, 2020, 1, 2010-2018.	5.4	11
14	Transformation of hollow ZnFe-ZIF-8 nanocrystals into hollow ZnFe–N/C electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 21183-21191.	2.8	4
15	Sandwich-type H2/CO2 membranes comprising of graphene oxide and sodalite crystals with adjustable morphology and size. Microporous and Mesoporous Materials, 2020, 300, 110120.	4.4	7
16	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie - International Edition, 2020, 59, 6284-6288.	13.8	31
17	Intrinsic Defect-Rich Hierarchically Porous Carbon Architectures Enabling Enhanced Capture and Catalytic Conversion of Polysulfides. ACS Nano, 2020, 14, 6222-6231.	14.6	89
18	Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Research, 2020, 13, 2056-2062.	10.4	39

#	Article	IF	CITATIONS
19	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie, 2020, 132, 6343-6347.	2.0	3
20	Ni 1â€x Co x O y , Ni 1â€x Co x S y and Ni 1â€x Co x P y Catalysts Prepared from Ni 1â€x Co x â€ZIFâ€67 for Broduction by Electrolysis in Alkaline Media. ChemCatChem, 2019, 11, 5131-5138.	Hydrogen 3.7	8
21	Efficient dye nanofiltration of a graphene oxide membrane <i>via</i> combination with a covalent organic framework by hot pressing. Journal of Materials Chemistry A, 2019, 7, 24301-24310.	10.3	72
22	Green Hydrogen Separation from Nitrogen by Mixedâ€Matrix Membranes Consisting of Nanosized Sodalite Crystals. ChemSusChem, 2019, 12, 4529-4537.	6.8	23
23	Selective hydrogenation of alkenes using ZIF-67 shell membrane deposited on platinum/alumina core catalyst. Microporous and Mesoporous Materials, 2019, 276, 98-106.	4.4	5
24	In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1 , .	4.5	20
25	The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. Microporous and Mesoporous Materials, 2018, 263, 21-27.	4.4	34
26	Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media. Applied Surface Science, 2018, 435, 237-246.	6.1	30
27	Sandwich membranes through a two-dimensional confinement strategy for gas separation. Materials Chemistry Frontiers, 2018, 2, 1911-1919.	5.9	12
28	Preparation of silicalite-1@Pt/alumina core–shell catalyst for shape-selective hydrogenation of xylene isomers. Catalysis Communications, 2015, 64, 110-113.	3.3	11
29	Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method. Electrochimica Acta, 2015, 182, 613-620.	5.2	75
30	Fabrication of hierarchical architectures of Tb-MOF by a "green coordination modulation method― for the sensing of heavy metal ions. CrystEngComm, 2013, 15, 6702.	2.6	54
31	Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks. Chemistry of Materials, 2012, 24, 444-450.	6.7	223
32	Solvethermal synthesis of mono- and bi-metallic flower-like infinite coordination polymer and formation mechanism. Inorganic Chemistry Communication, 2012, 18, 21-24.	3.9	10
33	Coordination Modulation Induced Synthesis of Nanoscale Eu _{1â€<i>x</i>} Tb _{<i>x</i>} â€Metalâ€Organic Frameworks for Luminescent Thin Films. Advanced Materials, 2010, 22, 4190-4192.	21.0	314
34	Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers. CrystEngComm, 2010, 12, 3537.	2.6	31
35	"Twin Copper Source―Growth of Metalâ^'Organic Framework Membrane: Cu ₃ (BTC) ₂ with High Permeability and Selectivity for Recycling H ₂ . Journal of the American Chemical Society, 2009, 131, 1646-1647.	13.7	561
36	Green hydrothermal synthesis of high-quality ZnS quantum dots with different patterning. , 2008, , .		0

#	Article	IF	CITATIONS
37	Hierarchical Growth of Large-Scale Ordered Zeolite Silicalite-1 Membranes with High Permeability and Selectivity for Recycling CO2. Angewandte Chemie - International Edition, 2006, 45, 7053-7056.	13.8	105