Hailing Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4890694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Twin Copper Source―Growth of Metalâ°Organic Framework Membrane: Cu ₃ (BTC) ₂ with High Permeability and Selectivity for Recycling H ₂ . Journal of the American Chemical Society, 2009, 131, 1646-1647.	13.7	561
2	Coordination Modulation Induced Synthesis of Nanoscale Eu _{1â€<i>x</i>} Tb _{<i>x</i>} â€Metalâ€Organic Frameworks for Luminescent Thin Films. Advanced Materials, 2010, 22, 4190-4192.	21.0	314
3	Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks. Chemistry of Materials, 2012, 24, 444-450.	6.7	223
4	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 3840-3845.	13.8	109
5	Hierarchical Growth of Large-Scale Ordered Zeolite Silicalite-1 Membranes with High Permeability and Selectivity for Recycling CO2. Angewandte Chemie - International Edition, 2006, 45, 7053-7056.	13.8	105
6	Intrinsic Defect-Rich Hierarchically Porous Carbon Architectures Enabling Enhanced Capture and Catalytic Conversion of Polysulfides. ACS Nano, 2020, 14, 6222-6231.	14.6	89
7	Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method. Electrochimica Acta, 2015, 182, 613-620.	5.2	75
8	Efficient dye nanofiltration of a graphene oxide membrane <i>via</i> combination with a covalent organic framework by hot pressing. Journal of Materials Chemistry A, 2019, 7, 24301-24310.	10.3	72
9	Fabrication of hierarchical architectures of Tb-MOF by a "green coordination modulation method― for the sensing of heavy metal ions. CrystEngComm, 2013, 15, 6702.	2.6	54
10	Boosting the Pseudocapacitive and High Mass‣oaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Advanced Functional Materials, 2021, 31, 2007636.	14.9	53
11	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	38.1	47
12	Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Research, 2020, 13, 2056-2062.	10.4	39
13	Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2021, 286, 119907.	20.2	37
14	The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. Microporous and Mesoporous Materials, 2018, 263, 21-27.	4.4	34
15	Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers. CrystEngComm, 2010, 12, 3537.	2.6	31
16	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie - International Edition, 2020, 59, 6284-6288.	13.8	31
17	Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media. Applied Surface Science, 2018, 435, 237-246.	6.1	30
18	Green Hydrogen Separation from Nitrogen by Mixedâ€Matrix Membranes Consisting of Nanosized Sodalite Crystals. ChemSusChem, 2019, 12, 4529-4537.	6.8	23

HAILING GUO

#	Article	IF	CITATIONS
19	Preparation of HKUST-1/PEI mixed-matrix membranes: Adsorption-diffusion coupling control of small gas molecules. Journal of Membrane Science, 2022, 643, 120070.	8.2	23
20	In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1, .	4.5	20
21	Micelles of Mesoporous Silica with Inserted Iron Complexes as a Platform for Constructing Efficient Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 54720-54731.	8.0	17
22	Interfacial polymerization of MOF "monomers―to fabricate flexible and thin membranes for molecular separation with ultrafast water transport. Journal of Materials Chemistry A, 2021, 9, 17528-17537.	10.3	16
23	The role of Nb2O5 in controlling metal-acid sites of CoMoS/γ-Al2O3 catalyst for the enhanced hydrodeoxygenation of guaiacol into hydrocarbons. Journal of Catalysis, 2022, 407, 19-28.	6.2	15
24	Sandwich membranes through a two-dimensional confinement strategy for gas separation. Materials Chemistry Frontiers, 2018, 2, 1911-1919.	5.9	12
25	Preparation of silicalite-1@Pt/alumina core–shell catalyst for shape-selective hydrogenation of xylene isomers. Catalysis Communications, 2015, 64, 110-113.	3.3	11
26	Green synthesis of hierarchical carbon coupled with Fe3O4/Fe2C as an efficient catalyst for the oxygen reduction reaction. Materials Advances, 2020, 1, 2010-2018.	5.4	11
27	Solvethermal synthesis of mono- and bi-metallic flower-like infinite coordination polymer and formation mechanism. Inorganic Chemistry Communication, 2012, 18, 21-24.	3.9	10
28	Ni 1â€x Co x O y , Ni 1â€x Co x S y and Ni 1â€x Co x P y Catalysts Prepared from Ni 1â€x Co x â€ZlFâ€67 for Production by Electrolysis in Alkaline Media. ChemCatChem, 2019, 11, 5131-5138.	Hydrogen	8
29	Passivated Surface of High Aluminum Containing ZSM-5 by Silicalite-1: Synthesis and Application in Dehydration Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 4839-4848.	6.7	8
30	Sandwich-type H2/CO2 membranes comprising of graphene oxide and sodalite crystals with adjustable morphology and size. Microporous and Mesoporous Materials, 2020, 300, 110120.	4.4	7
31	Transformation of Discrete Amorphous Aluminosilicate Nanoparticles into Nanosized Zeolites. Advanced Materials Interfaces, 2021, 8, 2000634.	3.7	6
32	Selective hydrogenation of alkenes using ZIF-67 shell membrane deposited on platinum/alumina core catalyst. Microporous and Mesoporous Materials, 2019, 276, 98-106.	4.4	5
33	Transformation of hollow ZnFe-ZIF-8 nanocrystals into hollow ZnFe–N/C electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 21183-21191.	2.8	4
34	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Cas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie, 2020, 132, 6343-6347.	2.0	3
35	Effect of Sodium Concentration on the Synthesis of Faujasite by Two-step Synthesis Procedure. Chemical Research in Chinese Universities, 2021, 37, 1137.	2.6	1
36	Efficient hydrodesulfurization of dibenzothiophene over core–shell Ni/Al ₂ O ₃ @SOD and Mo/Al ₂ O ₃ composite catalysts. Inorganic Chemistry Frontiers, 2022, 9, 3384-3391.	6.0	1

11.	11110	<u></u>	\sim
1 17 1		Ju	\mathbf{U}

#	Article	IF	CITATIONS
37	Green hydrothermal synthesis of high-quality ZnS quantum dots with different patterning. , 2008, , .		0