Chun-Kuei Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4890595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhythmic sympathetic nerve discharges in an in vitro neonatal rat brain stem-spinal cord preparation. Journal of Applied Physiology, 1999, 87, 1066-1074.	1.2	24
2	Differential effects on sympathetic nerve activities elicited by activation of neurons in the pressor areas of dorsal and rostral ventrolateral medulla in cats. Journal of the Autonomic Nervous System, 1992, 40, 141-153.	1.9	18
3	Intraspinal amino acid neurotransmitter activities are involved in the generation of rhythmic sympathetic nerve discharge in newborn rat spinal cord. Brain Research, 2001, 904, 112-125.	1.1	18
4	Identification of active thoracic spinal segments responsible for tonic and bursting sympathetic discharge in neonatal rats. Brain Research, 2003, 966, 288-299.	1.1	18
5	Intrinsic and extrinsic factors affecting phrenic motoneuronal excitability in neonatal rats. Brain Research, 1997, 774, 62-68.	1.1	17
6	A single minute lesion around the ventral respiratory group in medulla produces fatal apnea in cats. Journal of the Autonomic Nervous System, 1998, 73, 7-18.	1.9	16
7	Computational solution of spike overlapping using data-based subtraction algorithms to resolve synchronous sympathetic nerve discharge. Frontiers in Computational Neuroscience, 2013, 7, 149.	1.2	13
8	GABAergic inhibition of neonatal rat phrenic motoneurons. Neuroscience Letters, 1998, 248, 191-194.	1.0	12
9	GABAB-receptor-mediated suppression of sympathetic outflow from the spinal cord of neonatal rats. Journal of Applied Physiology, 2005, 99, 1658-1667.	1.2	10
10	Endogenous activation of nicotinic receptors underlies sympathetic tone generation in neonatal rat spinal cord in vitro. Neuropharmacology, 2006, 51, 1120-1128.	2.0	10
11	The role of intraspinal adenosine A1 receptors in sympathetic regulation. European Journal of Pharmacology, 2004, 492, 49-55.	1.7	8
12	Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro. Journal of Biomedical Science, 2009, 16, 44.	2.6	8
13	Glutamatergic activities in neonatal rat spinal cord heterogeneously regulate single-fiber splanchnic nerve discharge. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 175-180.	1.4	8
14	Coexistence of autonomic and somatic mechanisms in the pressor areas of medulla in cats. Brain Research Bulletin, 1992, 29, 15-26.	1.4	6
15	Basal sympathetic activity generated in neonatal mouse brainstem-spinal cord preparation requires T-type calcium channel subunit α1H. Experimental Physiology, 2011, 96, 486-494.	0.9	6
16	Ketamine Attenuates Sympathetic Activity Through Mechanisms not Mediated by N-Methyl-d-Aspartate Receptors in the Isolated Spinal Cord of Neonatal Rats. Anesthesia and Analgesia, 2006, 102, 806-810.	1.1	5
17	Supraspinal contribution to splanchnic sympathetic activity in neonatal mouse and rat brainstem–spinal cord in vitro. Autonomic Neuroscience: Basic and Clinical, 2010, 156, 51-59.	1.4	5
18	Lack of type VI adenylyl cyclase (AC6) leads to abnormal sympathetic tone in neonatal mice. Experimental Neurology, 2013, 248, 10-15.	2.0	3

CHUN-KUEI SU

#	Article	IF	CITATIONS
19	Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords. Frontiers in Physiology, 2018, 9, 163.	1.3	3
20	State-dependent modulation of sympathetic firing by α1-adrenoceptors requires constitutive PKC activity in the neonatal rat spinal cord. Autonomic Neuroscience: Basic and Clinical, 2020, 227, 102688.	1.4	2
21	Presence of neuronal cell bodies in the sympathetic pressor areas of dorsal and ventrolateral medulla inhibiting phrenic nerve discharge in cats. Clinical Autonomic Research, 1992, 2, 189-196.	1.4	1
22	Correlation of vasomotor- and respiratory-controlling mechanisms around the caudal ventrolateral medulla in cats. Neuroscience Letters, 1999, 269, 79-82.	1.0	1
23	Mediation of Vagal Cardioinhibitory Responses by Clutamatergic Receptors in the Caudal Medulla of Turtles. Chinese Journal of Physiology, 2011, 54, 47-54.	0.4	0