
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4890575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PLoS ONE, 2022, 17, e0266470.	2.5	12
2	High pressure processing of heat and pressure resistant fungi as affected by pH, water activity, sulfites, and dimethyl dicarbonate in a diluted apple juice concentrate. Food Control, 2021, 120, 107551.	5.5	14
3	Evaluation of Foodborne Pathogen Die-off in Back-Sweetened Wine and Apple Cider Models. Journal of Food Protection, 2021, 84, 1023-1032.	1.7	1
4	Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics, 2021, 10, 125.	3.7	27
5	Implementation of ATP and Microbial Indicator Testing for Hygiene Monitoring in a Tofu Production Facility Improves Product Quality and Hygienic Conditions of Food Contact Surfaces: a Case Study. Applied and Environmental Microbiology, 2021, 87, .	3.1	7
6	Evaluation of high pressure processing (HPP) inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid and acidified juices and beverages. International Journal of Food Microbiology, 2021, 339, 109034.	4.7	27
7	Bee Pollen and Bee Bread as a Source of Bacteria Producing Antimicrobials. Antibiotics, 2021, 10, 713.	3.7	18
8	Kinetic study of selected microorganisms and quality attributes during cold storage of mango and passion fruit smoothie subjected to dimethyl dicarbonate. International Journal of Food Microbiology, 2021, 358, 109404.	4.7	6
9	Alicyclobacillus mali sp. nov., Alicyclobacillus suci sp. nov. and Alicyclobacillus fructus sp. nov., thermoacidophilic sporeforming bacteria isolated from fruit beverages. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	16
10	Development of an Irrigation Water Quality Database to Identify Water Resources and Assess Microbiological Risks During the Production of Fresh Fruits and Vegetables. Frontiers in Water, 2021, 3, .	2.3	0
11	High pressure processing of spoilage fungi as affected by water activity in a diluted apple juice concentrate. Food Control, 2020, 107, 106779.	5.5	26
12	The combined effect of high pressure processing and dimethyl dicarbonate to inactivate foodborne pathogens in apple juice. Brazilian Journal of Microbiology, 2020, 51, 779-785.	2.0	13
13	Effect of high-pressure processing on bacterial inactivation in açaÃ-juices with varying pH and soluble solids content. Innovative Food Science and Emerging Technologies, 2020, 66, 102490.	5.6	22
14	Effect of Ethanol Extracts of Propolis (EEPs) against Staphylococcal Biofilm—Microscopic Studies. Pathogens, 2020, 9, 646.	2.8	13
15	Draft genome sequence of antimicrobial producing Paenibacillus alvei strain MP1 reveals putative novel antimicrobials. BMC Research Notes, 2020, 13, 280.	1.4	7
16	Paenibacillus alvei MP1 as a Producer of the Proteinaceous Compound with Activity against Important Human Pathogens, Including Staphylococcus aureus and Listeria monocytogenes. Pathogens, 2020, 9, 319.	2.8	9
17	Combined Effect of Storage Condition, Surface Integrity, and Length of Shelf Life on the Growth of Listeria monocytogenes and Spoilage Microbiota on Refrigerated Ready-to-Eat Products. Journal of Food Protection, 2019, 82, 1423-1432.	1.7	9
18	Fate of Spoilage and Pathogenic Microorganisms in Acidified Cold-Filled Hot Pepper Sauces. Journal of Food Protection, 2019, 82, 1736-1743.	1.7	4

#	Article	IF	CITATIONS
19	Association of fungal genera from spoiled processed foods with physicochemical food properties and processing conditions. Food Microbiology, 2019, 83, 211-218.	4.2	35
20	The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts. Molecules, 2019, 24, 1732.	3.8	46
21	Thermal Resistance of Xerophilic Fungi in Low-Water-Activity (0.70 to 0.80) Confectionery Model Foods. Journal of Food Protection, 2019, 82, 390-394.	1.7	8
22	The Role of Solid Support Bound Metal Chelators on Systemâ€Dependent Synergy and Antagonism with Nisin. Journal of Food Science, 2019, 84, 580-589.	3.1	1
23	High levels of branched chain fatty acids in nÄŧto and other Asian fermented foods. Food Chemistry, 2019, 286, 428-433.	8.2	32
24	Conformal Hydrogel Coatings on Catheters To Reduce Biofouling. Langmuir, 2019, 35, 1927-1934.	3.5	45
25	Fruit infected with Paecilomyces niveus: A source of spoilage inoculum and patulin in apple juice concentrate?. Food Control, 2019, 97, 81-86.	5.5	26
26	Nature Abhors a Vacuum: Highly Diverse Mechanisms Enable Spoilage Fungi to Disperse, Survive, and Propagate in Commercially Processed and Preserved Foods. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 286-304.	11.7	29
27	Conventional Measurements of Sulfur Dioxide (SO ₂) in Red Wine Overestimate SO ₂ Antimicrobial Activity. American Journal of Enology and Viticulture, 2018, 69, 210-220.	1.7	17
28	Outgraded produce variably retains surface inoculated Escherichia coli through washing. International Journal of Food Microbiology, 2018, 269, 27-35.	4.7	25
29	The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control, 2018, 85, 144-150.	5.5	65
30	Stability of alternariol and alternariol monomethyl ether during food processing of tomato products. Food Chemistry, 2018, 245, 951-957.	8.2	25
31	Microbial Safety and Quality Evaluation of UV-Treated, Cold-Pressed Colored and Turbid Juices and Beverages. Journal of Food Protection, 2018, 81, 1549-1556.	1.7	9
32	The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland. International Journal of Environmental Research and Public Health, 2018, 15, 2002.	2.6	39
33	Scalable and Rechargeable Antimicrobial Coating for Food Safety Applications. Journal of Agricultural and Food Chemistry, 2018, 66, 11441-11450.	5.2	19
34	Fungal Spoilage in Food Processing. Journal of Food Protection, 2018, 81, 1035-1040.	1.7	50
35	Risk Mitigation for Immunocompromised Consumers of Mucormycete Spoiled and Fermented Foods: Germane Guidance and Remaining Needs. Microorganisms, 2018, 6, 45.	3.6	11
36	Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules, 2018, 23, 260.	3.8	56

3

1

#	Article	IF	CITATIONS
37	Postharvest Supply Chain with Microbial Travelers: a Farm-to-Retail Microbial Simulation and Visualization Framework. Applied and Environmental Microbiology, 2018, 84, .	3.1	8
38	Inactivation of Salmonella enterica and spoilage microorganisms in orange juice treated with dimethyl dicarbonate (DMDC). International Journal of Food Microbiology, 2018, 285, 152-157.	4.7	15
39	Isolation of Bacteriocin-producing <i>Staphylococcus</i> spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis. Polish Journal of Microbiology, 2018, 67, 163-170.	1.7	3
40	Ascorbic acid and selected preservatives influence effectiveness of UV treatment of apple juice. LWT - Food Science and Technology, 2017, 75, 9-16.	5.2	24
41	Effect of Water Activity on the Thermal Tolerance and Survival of Salmonella enterica Serovars Tennessee and Senftenberg in Goat's Milk Caramel. Journal of Food Protection, 2017, 80, 922-927.	1.7	10
42	An <i>in vitro</i> and <i>in vivo</i> evaluation of peroxyacetic acid as an alternative sanitizer for wine barrels. Ciencia E Tecnica Vitivinicola, 2016, 31, 41-50.	0.9	3
43	Characterization and control of Mucor circinelloides spoilage in yogurt. International Journal of Food Microbiology, 2016, 228, 14-21.	4.7	34
44	Microbial dynamics of indicator microorganisms on fresh tomatoes in the supply chain from Mexico to the USA. International Journal of Food Microbiology, 2016, 238, 202-207.	4.7	15
45	Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology. Journal of Food Science Education, 2016, 15, 78-82.	1.0	1
46	Knowledge and Attitudes of Produce and Seafood Processors and Food Safety Educators Regarding Nonthermal Processes. Journal of Food Science Education, 2016, 15, 120-128.	1.0	2
47	UV Tolerance of Spoilage Microorganisms and Acid-Shocked and Acid-Adapted Escherichia coli in Apple Juice Treated with a Commercial UV Juice-Processing Unit. Journal of Food Protection, 2016, 79, 294-298.	1.7	6
48	Gene expression analysis for Listeria monocytogenes following exposure to pulsed light and continuous ultraviolet light treatments. LWT - Food Science and Technology, 2016, 68, 579-588.	5.2	24
49	Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough?. Npj Biofilms and Microbiomes, 2015, 1, 15022.	6.4	189
50	Variable Efficacy of the Proteinaceous Antifungal YvgO in Select Fruit Juices and Teas as a Complement with UV Methods of Food Protectionâ€. Journal of Food Protection, 2015, 78, 1851-1860.	1.7	4
51	Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Bioscience, 2015, 10, 48-58.	4.4	20
52	Time after apple pressing and insoluble solids influence the efficiency of the UV treatment of cloudy apple juice. LWT - Food Science and Technology, 2015, 62, 218-224.	5.2	11
53	Efficient Reduction of Pathogenic and Spoilage Microorganisms from Apple Cider by Combining Microfiltration with UV Treatment. Journal of Food Protection, 2015, 78, 716-722.	1.7	21

54 58.ÂJuices and Juice-Containing Beverages. , 2015, , .

#	Article	IF	CITATIONS
55	25.ÂAciduric Flat Sour Sporeformers. , 2015, , .		Ο
56	Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by <i>Escherichia coli</i> and <i>Listeria</i> spp Biofouling, 2014, 30, 1253-1268.	2.2	85
57	Effect of Acid Adaptation and Acid Shock on Thermal Tolerance and Survival of Escherichia coli O157:H7 and O111 in Apple Juice. Journal of Food Protection, 2014, 77, 1656-1663.	1.7	22
58	Determination of the Validation Frequency for Commercial UV Juice Processing Units. Journal of Food Protection, 2014, 77, 2076-2080.	1.7	2
59	Geographical and Meteorological Factors Associated with Isolation of Listeria Species in New York State Produce Production and Natural Environments. Journal of Food Protection, 2014, 77, 1919-1928.	1.7	89
60	Nutrient-Dependent Efficacy of the Antifungal Protein YvgO Correlates to Cellular Proliferation Rate in Candida albicans 3153A and Byssochlamys fulva H25. Probiotics and Antimicrobial Proteins, 2014, 6, 198-207.	3.9	5
61	Distributions of Salmonella Subtypes Differ between Two U.S. Produce-Growing Regions. Applied and Environmental Microbiology, 2014, 80, 3982-3991.	3.1	41
62	Short communication: Homologous expression of recombinant and native thurincin H in an engineered natural producer. Journal of Dairy Science, 2014, 97, 4120-4126.	3.4	5
63	Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. Journal of the Science of Food and Agriculture, 2014, 94, 28-44.	3.5	93
64	Development of a Homologous Expression System for and Systematic Site-Directed Mutagenesis Analysis of Thurincin H, a Bacteriocin Produced by Bacillus thuringiensis SF361. Applied and Environmental Microbiology, 2014, 80, 3576-3584.	3.1	16
65	Large-Scale Purification, Characterization, and Spore Outgrowth Inhibitory Effect of Thurincin H, a Bacteriocin Produced by Bacillus thuringiensis SF361. Probiotics and Antimicrobial Proteins, 2014, 6, 105-113.	3.9	18
66	Plant-Pathogenic Oomycetes, Escherichia coli Strains, and Salmonella spp. Frequently Found in Surface Water Used for Irrigation of Fruit and Vegetable Crops in New York State. Applied and Environmental Microbiology, 2014, 80, 4814-4820.	3.1	37
67	UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water. Applied and Environmental Microbiology, 2014, 80, 849-854.	3.1	28
68	Bactericidal thurincin H causes unique morphological changes in <i>Bacillus cereus</i> F4552 without affecting membrane permeability. FEMS Microbiology Letters, 2014, 357, 69-76.	1.8	29
69	Short communication: Naturally sensitive Bacillus thuringiensis EG10368 produces thurincin H and acquires immunity after heterologous expression of the one-step-amplified thurincin H gene cluster. Journal of Dairy Science, 2014, 97, 4115-4119.	3.4	4
70	Thermal Resistance Parameters of Acid-Adapted and Unadapted Escherichia coli O157:H7 in Apple-Carrot Juice Blends: Effect of Organic Acids and pH. Journal of Food Protection, 2014, 77, 567-573.	1.7	14
71	Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces. Applied and Environmental Microbiology, 2013, 79, 2703-2712.	3.1	267
72	A Framework for Developing Research Protocols for Evaluation of Microbial Hazards and Controls during Production That Pertain to the Application of Untreated Soil Amendments of Animal Origin on Land Used To Grow Produce That May Be Consumed Raw. Journal of Food Protection, 2013, 76, 1062-1084.	1.7	36

#	Article	IF	CITATIONS
73	Shelf-Life Evaluation of Natural Antimicrobials for Concord and Niagara Grape Juices. Journal of Food Protection, 2013, 76, 72-78.	1.7	8
74	Pickled Egg Production: Inactivation Rate of Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus during Acidification Step. Journal of Food Protection, 2013, 76, 1846-1853.	1.7	5
75	Risk Factors Associated with Salmonella and Listeria monocytogenes Contamination of Produce Fields. Applied and Environmental Microbiology, 2013, 79, 7618-7627.	3.1	153
76	Landscape and Meteorological Factors Affecting Prevalence of Three Food-Borne Pathogens in Fruit and Vegetable Farms. Applied and Environmental Microbiology, 2013, 79, 588-600.	3.1	229
77	Decontamination of Green Onions and Baby Spinach by Vaporized Ethyl Pyruvate. Journal of Food Protection, 2012, 75, 1012-1022.	1.7	22
78	Efficacy of UV, Acidified Sodium Hypochlorite, and Mild Heat for Decontamination of Surface and Infiltrated Escherichia coli O157:H7 on Green Onions and Baby Spinach. Journal of Food Protection, 2012, 75, 1198-1206.	1.7	10
79	Functional Assignment of YvgO, a Novel Set of Purified and Chemically Characterized Proteinaceous Antifungal Variants Produced by Bacillus thuringiensis SF361. Applied and Environmental Microbiology, 2012, 78, 2543-2552.	3.1	7
80	Patulin Reduction in Apple Juice from Concentrate by UV Radiation and Comparison of Kinetic Degradation Models between Apple Juice and Apple Cider. Journal of Food Protection, 2012, 75, 717-724.	1.7	52
81	Growth Inhibition of Foodborne Pathogens byâ€, <i>Oenococcus oeni</i> . Journal of Food Science, 2012, 77, M15-9.	3.1	1
82	Juices and Functional Drinks. , 2012, , 229-261.		1
83	Comparison of Acid and Bile Tolerances, Cholesterol Assimilation, and CLA Production in Probiotic Lactobacillus acidophilus Strains. Korean Journal for Food Science of Animal Resources, 2012, 32, 409-413.	1.5	1
84	Reducing Patulin Contamination in Apple Juice by Using Inactive Yeast. Journal of Food Protection, 2011, 74, 149-153.	1.7	43
85	The 3D Solution Structure of Thurincinâ€H, a Bacteriocin with Four Sulfur to αâ€Carbon Crosslinks. Angewandte Chemie - International Edition, 2011, 50, 8718-8721.	13.8	61
86	Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. International Journal of Food Microbiology, 2010, 142, 286-291.	4.7	59
87	Reduction of Patulin in Apple Cider by UV Radiation. Journal of Food Protection, 2010, 73, 69-74.	1.7	56
88	Thermoaciduric Clostridium pasteurianum Spoilage of Shelf-Stable Apple Juice. Journal of Food Protection, 2010, 73, 1886-1890.	1.7	11
89	Modeling Penicillium expansum Resistance to Thermal and Chlorine Treatments. Journal of Food Protection, 2009, 72, 2618-2622.	1.7	11
90	Influence of Storage Temperature and Apple Variety on Patulin Production by Penicillium expansum. Journal of Food Protection, 2009, 72, 1030-1036.	1.7	39

#	Article	IF	CITATIONS
91	Inactivation of different strains of Escherichia coli O157:H7 in various apple ciders treated with dimethyl dicarbonate (DMDC) and sulfur dioxide (SO2) as an alternative method. Food Microbiology, 2009, 26, 8-15.	4.2	29
92	Isolation and characterization of a protective bacterial culture isolated from honey active against American Foulbrood disease. FEMS Microbiology Letters, 2009, 296, 39-44.	1.8	20
93	Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by <i>Bacillus thuringiensis</i> SF361. FEMS Microbiology Letters, 2009, 299, 205-213.	1.8	91
94	Characterization of Mundticin L, a Class IIa Anti- <i>Listeria</i> Bacteriocin from <i>Enterococcus mundtii</i> CUGF08. Applied and Environmental Microbiology, 2009, 75, 5708-5713.	3.1	35
95	Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against <i>Byssochlamys fulva</i> H25. Journal of Applied Microbiology, 2008, 105, 663-673.	3.1	48
96	Antimicrobial activity of bacterial isolates from different floral sources of honey. International Journal of Food Microbiology, 2008, 126, 240-244.	4.7	85
97	Efficacy of Sanitizing Treatments against Penicillium expansum Inoculated on Six Varieties of Apples. Journal of Food Protection, 2008, 71, 643-647.	1.7	27
98	Effects of Ultraviolet Irradiation on Chemical and Sensory Properties of Goat Milk. Journal of Dairy Science, 2007, 90, 3178-3186.	3.4	81
99	Thermal Inactivation of Salmonella and Escherichia coli O157:H7 on Alfalfa Seeds. Journal of Food Protection, 2007, 70, 1698-1703.	1.7	35
100	Comprehensive Review of Patulin Control Methods in Foods. Comprehensive Reviews in Food Science and Food Safety, 2005, 4, 8-21.	11.7	343
101	Efficacy of UV Light for the Reduction of Listeria monocytogenes in Goat's Milk. Journal of Food Protection, 2005, 68, 2212-2216.	1.7	119
102	Genetic Characterization of Antimicrobial Peptides. Food Additives, 2005, , .	0.1	0
103	Heat Treatments To Enhance the Safety of Mung Bean Seeds. Journal of Food Protection, 2004, 67, 1257-1260.	1.7	40
104	Modeling of Escherichia coli Inactivation by UV Irradiation at Different pH Values in Apple Cider. Journal of Food Protection, 2004, 67, 1153-1156.	1.7	103
105	Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys. International Journal of Food Microbiology, 2004, 97, 1-8.	4.7	176
106	Influence of Apple Cultivars on Inactivation of Different Strains of Escherichia coli O157:H7 in Apple Cider by UV Irradiation. Applied and Environmental Microbiology, 2004, 70, 6061-6065.	3.1	101
107	Microbiology of Fruit Products. , 2004, , .		3
108	Relationship among fecal coliforms and Escherichia coli in various foods. European Food Research and Technology, 2003, 216, 331-334.	3.3	19

#	Article	IF	CITATIONS
109	STORAGE QUALITY OF PASTEURIZED AND UV TREATED APPLE CIDER. Journal of Food Processing and Preservation, 2003, 27, 21-35.	2.0	49
110	Isolation, Structural Characterization, and Properties of Mattacin (Polymyxin M), a Cyclic Peptide Antibiotic Produced byPaenibacillus kobensis M. Journal of Biological Chemistry, 2003, 278, 13124-13132.	3.4	100
111	Inactivation of Cryptosporidium parvum Oocysts in Fresh Apple Cider by UV Irradiation. Applied and Environmental Microbiology, 2002, 68, 4168-4172.	3.1	83
112	Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology (United Kingdom), 2002, 148, 3347-3352.	1.8	113
113	Escherichia coliO157:H7 As An Emerging Foodborne Pathogen: A Literature Review. Critical Reviews in Biotechnology, 2001, 21, 27-48.	9.0	52
114	Cloning and heterologous expression of xylanase from Pichia stipitis in Escherichia coli. Journal of Applied Microbiology, 2001, 90, 248-255.	3.1	26
115	An alternative approach for enumeration of Escherichia coli in foods. International Journal of Food Microbiology, 2001, 68, 217-223.	4.7	4
116	Ultraviolet Light. Journal of Food Science, 2000, 65, 90-92.	3.1	106
117	Analysis and Modeling of the Variability Associated with UV Inactivation of Escherichia coli in Apple Cider. Journal of Food Protection, 2000, 63, 1587-1590.	1.7	62
118	Detection of the Cholera Toxin-binding Activity of κ-Casein Macropeptide and Optimization of Its Production by the Response Surface Methodology. Bioscience, Biotechnology and Biochemistry, 2000, 64, 516-522.	1.3	24
119	Characterization and Purification of a Bacteriocin Produced by a Potential Probiotic Culture, Lactobacillus acidophilus 30SC. Journal of Dairy Science, 2000, 83, 2747-2752.	3.4	87
120	Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A: the immunity gene confers cross-protection to enterocin B The GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is AF207838. Microbiology (United Kingdom), 2000, 146, 621-631.	1.8	39
121	Ultraviolet Light. Journal of Food Safety, 2000, 65, 90-92.	2.3	18
122	Escherichia coliO157:H7 As An Emerging Foodborne Pathogen: A Literature Review. Critical Reviews in Food Science and Nutrition, 1999, 39, 481-502.	10.3	80
123	Atypical Genetic Locus Associated with Constitutive Production of Enterocin B by <i>Enterococcus faecium</i> BFE 900. Applied and Environmental Microbiology, 1999, 65, 2170-2178.	3.1	85
124	Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology (United Kingdom), 1998, 144, 2845-2854.	1.8	61
125	Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Molecular Microbiology, 1997, 23, 1293-1301.	2.5	156
126	A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. Journal of Bacteriology, 1995, 177, 3143-3149.	2.2	144

#	Article	IF	CITATIONS
127	Heterologous expression of the lactacin F peptides by Carnobacterium piscicola LV17. Applied and Environmental Microbiology, 1995, 61, 1371-1377.	3.1	47
128	Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology (United Kingdom), 1994, 140, 517-526.	1.8	111