Hau Quoc Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/489026/publications.pdf

Version: 2024-02-01

25 papers 282 citations

759233 12 h-index 940533 16 g-index

26 all docs

26 docs citations

times ranked

26

138 citing authors

#	Article	IF	CITATIONS
1	Facile room-temperature fabrication of a silver–platinum nanocoral catalyst towards hydrogen evolution and methanol electro-oxidation. Materials Advances, 2022, 3, 1609-1616.	5.4	16
2	One-pot production of a sea urchin-like alloy electrocatalyst for the oxygen electro-reduction reaction. Dalton Transactions, 2022, 51, 11427-11436.	3.3	12
3	Synthesis and characterization the multifunctional nanostructures TixW1-xO2 ($x = 0.5$; 0.6; 0.7; 0.8) supports as robust non-carbon support for Pt nanoparticles for direct ethanol fuel cells. International Journal of Hydrogen Energy, 2021, 46, 24877-24890.	7.1	16
4	One-step heating hydrothermal of iridium-doped cubic perovskite strontium titanate towards hydrogen evolution. Materials Letters, 2021, 282, 128686.	2.6	11
5	Boosting alcohol electro-oxidation reaction with bimetallic PtRu nanoalloys supported on robust Ti0.7W0.3O2 nanomaterial in direct liquid fuel cells. International Journal of Hydrogen Energy, 2021, 46, 16776-16786.	7.1	15
6	Bimetallic PtIr nanoalloy on TiO ₂ -based solid solution oxide with enhanced oxygen reduction and ethanol electro-oxidation performance in direct ethanol fuel cells. Catalysis Science and Technology, 2021, 11, 1571-1579.	4.1	21
7	Platinum–Copper Bimetallic Nanodendritic Electrocatalyst on a TiO ₂ -Based Support for Methanol Oxidation in Alkaline Fuel Cells. ACS Applied Nano Materials, 2021, 4, 4983-4993.	5.0	22
8	Tuning crystal structure of iridium-incorporated titanium dioxide nanosupport and its influence on platinum catalytic performance in direct ethanol fuel cells. Materials Today Chemistry, 2021, 20, 100456.	3.5	8
9	In Situ Spatial Charge Separation of an Ir@TiO ₂ Multiphase Photosystem toward Highly Efficient Photocatalytic Performance of Hydrogen Production. Journal of Physical Chemistry C, 2020, 124, 16961-16974.	3.1	22
10	Rutile Ti _{0.9} lr _{0.1} O ₂ â€Supported Low Pt Loading: An Efficient Electrocatalyst for Ethanol Electrochemical Oxidation in Acidic Media. Energy Technology, 2020, 8, 2000431.	3.8	6
11	Superior CO-tolerance and stability toward alcohol electro-oxidation reaction of 1D-bimetallic platinum-cobalt nanowires on Tungsten-modified anatase TiO2 nanostructure. Fuel, 2020, 276, 118078.	6.4	16
12	Wire-like Pt on mesoporous Ti0.7W0.3O2 Nanomaterial with Compelling Electro-Activity for Effective Alcohol Electro-Oxidation. Scientific Reports, 2019, 9, 14791.	3.3	13
13	Tungsten-doped titanium-dioxide-supported low-Pt-loading electrocatalysts for the oxidation reaction of ethanol in acidic fuel cells. Comptes Rendus Chimie, 2019, 22, 829-837.	0.5	6
14	Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells. Comptes Rendus Chimie, 2019, 22, 838-843.	0.5	6
15	Investigation of iridium composition in Ti1 \hat{a} e"Ir O2 (x = 0.1, 0.2, 0.3) nanostructures as potential supports for platinum in methanol electro-oxidation. Comptes Rendus Chimie, 2019, 22, 844-854.	0.5	3
16	High conductivity of novel Ti0.9Ir0.1O2 support for Pt as a promising catalyst for low-temperature fuel cell applications. International Journal of Hydrogen Energy, 2019, 44, 20944-20952.	7.1	13
17	High conductivity and surface area of Ti0.7W0.3O2 mesoporous nanostructures support for Pt toward enhanced methanol oxidation in DMFCs. International Journal of Hydrogen Energy, 2019, 44, 20933-20943.	7.1	13
18	High Conductivity and Surface Area of Mesoporous Ti0.7W0.3O2 Materials as Promising Catalyst Support for Pt in Proton-Exchange Membrane Fuel Cells. Journal of Nanoscience and Nanotechnology, 2019, 19, 877-881.	0.9	3

#	Article	IF	CITATIONS
19	Advanced Nanoelectrocatalyst of Pt Nanoparticles Supported on Robust Ti _{0.7} Ir _{0.3} O ₂ as a Promising Catalyst for Fuel Cells. Industrial & Engineering Chemistry Research, 2019, 58, 675-684.	3.7	13
20	Novel nanorod TiO·7IrO·3O2 prepared by facile hydrothermal process: A promising non-carbon support for Pt in PEMFCs. International Journal of Hydrogen Energy, 2019, 44, 2361-2371.	7.1	17
21	Comparison the Rapid Microwave-Assisted Polyol Route and Modified Chemical Reduction Methods to Synthesize the Pt Nanoparticles on the Ti _{0.7} W _{0.3} O ₂ Support. Solid State Phenomena, 2018, 279, 181-186.	0.3	4
22	One-Step Hydrothermal Synthesis of a New Nanostructure Ti ₀ ₇ Ir ₀ ₃ O ₂ for Enhanced Electrical Conductivity: The Effect of pH on the Formation of Nanostructure. Journal of Nanoscience and Nanotechnology, 2018, 18, 6928-6933.	0.9	11
23	Advanced Ti _{0.7} W _{0.3} O ₂ Nanoparticles Prepared via Solvothermal Process Using Titanium Tetrachloride and Tungsten Hexachloride as Precursors. Journal of Nanoscience and Nanotechnology, 2018, 18, 7177-7182.	0.9	11
24	Synthesis the New Nanostructure Ti _{0.7} lr _{0.3} 0 ₂ via Low Temperature Hydrothermal Process. Applied Mechanics and Materials, 0, 876, 64-70.	0.2	3
25	Synthesis the New Nanostructure Ti _{0.3} O ₂ via Low Temperature Solvothermal Process. Applied Mechanics and Materials, 0, 876, 84-90.	0.2	1