
Subramaniam Jayanthi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetics of Addiction. , 2022, , 383-389.		Ο
2	Footshock-Induced Abstinence from Compulsive Methamphetamine Self-administration in Rat Model Is Accompanied by Increased Hippocampal Expression of Cannabinoid Receptors (CB1 and CB2). Molecular Neurobiology, 2022, 59, 1238-1248.	1.9	4
3	Sex-Specific Alterations in Dopamine Metabolism in the Brain after Methamphetamine Self-Administration. International Journal of Molecular Sciences, 2022, 23, 4353.	1.8	6
4	Sex differences in methamphetamine use disorder perused from pre-clinical and clinical studies: Potential therapeutic impacts. Neuroscience and Biobehavioral Reviews, 2022, 137, 104674.	2.9	27
5	Sex- and Brain Region-specific Changes in Gene Expression in Male and Female Rats as Consequences of Methamphetamine Self-administration and Abstinence. Neuroscience, 2021, 452, 265-279.	1.1	19
6	Epigenetic Landscape of Methamphetamine Use Disorder. Current Neuropharmacology, 2021, 19, 2060-2066.	1.4	7
7	Footshockâ€induced abstinence from compulsive methamphetamine selfâ€administration is associated with increased expression of cannabinoid receptors (CB1 and CB2) in the rat hippocampus. FASEB Journal, 2021, 35, .	0.2	0
8	Epigenetics of addiction. Neurochemistry International, 2021, 147, 105069.	1.9	18
9	Neurotoxicity of methamphetamine: Main effects and mechanisms. Experimental Neurology, 2021, 344, 113795.	2.0	88
10	Potassium Channels and Their Potential Roles in Substance Use Disorders. International Journal of Molecular Sciences, 2021, 22, 1249.	1.8	14
11	Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes, 2021, 12, 1614.	1.0	12
12	HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addiction Biology, 2020, 25, e12737.	1.4	15
13	A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Molecular Neurobiology, 2020, 57, 1459-1472.	1.9	24
14	Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Archives of Toxicology, 2020, 94, 3515-3526.	1.9	14
15	Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs. European Journal of Pharmacology, 2020, 889, 173732.	1.7	2
16	Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms. Psychopharmacology, 2020, 237, 1989-2005.	1.5	19
17	The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 222-234.	2.5	26
18	Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. International Journal of Neuropsychopharmacology, 2019, 22, 710-723.	1.0	38

#	Article	IF	CITATIONS
19	Genetic and Environmental Risk Factors for Cannabis Use: Preliminary Results for the Role of Parental Care Perception. Substance Use and Misuse, 2019, 54, 670-680.	0.7	18
20	Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacology Biochemistry and Behavior, 2019, 179, 98-108.	1.3	29
21	Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Molecular Neurobiology, 2019, 56, 3603-3615.	1.9	39
22	Selective Activation of Striatal NGF-TrkA/p75NTR/MAPK Intracellular Signaling in Rats That Show Suppression of Methamphetamine Intake 30 Days following Drug Abstinence. International Journal of Neuropsychopharmacology, 2018, 21, 281-290.	1.0	15
23	Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Translational Psychiatry, 2018, 8, 23.	2.4	32
24	Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Molecular Neurobiology, 2018, 55, 5154-5166.	1.9	38
25	Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 1-11.	2.5	39
26	Compulsive methamphetamine taking under punishment is associated with greater cue-induced drug seeking in rats. Behavioural Brain Research, 2017, 326, 265-271.	1.2	31
27	Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Scientific Reports, 2017, 7, 8331.	1.6	26
28	Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Molecular Psychiatry, 2017, 22, 1196-1204.	4.1	65
29	Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats. Scientific Reports, 2016, 6, 37002.	1.6	22
30	An Acute Methamphetamine Injection Downregulates the Expression of Several Histone Deacetylases (HDACs) in the Mouse Nucleus Accumbens: Potential Regulatory Role of HDAC2 Expression. Neurotoxicity Research, 2016, 30, 32-40.	1.3	19
31	Differential Expression of mRNAs Coding for Histone Deacetylases (HDACs) in the Nucleus Accumbens of Compulsive Methamphetamine Takers and Abstinent Rats. Journal of Drug and Alcohol Research, 2016, 5, 1-9.	0.9	3
32	CAMKII-conditional deletion of histone deacetylase 2 potentiates acute methamphetamine-induced expression of immediate early genes in the mouse nucleus accumbens. Scientific Reports, 2015, 5, 13396.	1.6	16
33	Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics, 2015, 10, 574-580.	1.3	101
34	Transcriptional and Epigenetic Substrates of Methamphetamine Addiction and Withdrawal: Evidence from a Long-Access Self-Administration Model in the Rat. Molecular Neurobiology, 2015, 51, 696-717.	1.9	64
35	Methamphetamine Downregulates Striatal Clutamate Receptors via Diverse Epigenetic Mechanisms. Biological Psychiatry, 2014, 76, 47-56.	0.7	109
36	Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. NeuroToxicology, 2014, 45, 178-184.	1.4	27

#	Article	IF	CITATIONS
37	Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later. PLoS ONE, 2014, 9, e84665.	1.1	35
38	Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genomics, 2013, 14, 545.	1.2	43
39	Epigenetics of Methamphetamine-Induced Changes in Glutamate Function. Neuropsychopharmacology, 2013, 38, 248-249.	2.8	27
40	CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiology of Disease, 2013, 58, 132-143.	2.1	115
41	Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens. PLoS ONE, 2012, 7, e34236.	1.1	111
42	Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways. PLoS ONE, 2011, 6, e28946.	1.1	78
43	Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology, 2011, 215, 353-365.	1.5	47
44	Differential histone modifications induced by chronic methamphetamine exposure in the rat striatum. FASEB Journal, 2011, 25, 896.6.	0.2	0
45	Differential effects of methamphetamine and SCH23390 on the expression of members of IEG families of transcription factors in the rat striatum. Brain Research, 2010, 1318, 1-10.	1.1	36
46	Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat. PLoS ONE, 2010, 5, e8790.	1.1	119
47	Dopamine D1 Receptors, Regulation of Gene Expression in the Brain, and Neurodegeneration. CNS and Neurological Disorders - Drug Targets, 2010, 9, 526-538.	0.8	90
48	Methamphetamine Induces Dopamine D1 Receptor-Dependent Endoplasmic Reticulum Stress-Related Molecular Events in the Rat Striatum. PLoS ONE, 2009, 4, e6092.	1.1	76
49	Methamphetamine Administration Causes Death of Dopaminergic Neurons in the Mouse Olfactory Bulb. Biological Psychiatry, 2007, 61, 1235-1243.	0.7	62
50	Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms. Neurotoxicity Research, 2007, 11, 183-202.	1.3	252
51	Identification of Putative Biomarkers in the Serum of Marijuana Users by Surfaceâ€Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry (SELDIâ€TOFâ€MS). FASEB Journal, 2007, 21, A421.	0.2	0
52	Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotoxicity Research, 2005, 8, 199-206.	1.3	114
53	Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 868-873.	3.3	208
54	Methamphetamine induces neuronal apoptosis via crossâ€ŧalks between endoplasmic reticulum and mitochondriaâ€dependent death cascades. FASEB Journal, 2004, 18, 238-251.	0.2	255

#	ARTICLE	IF	CITATIONS
55	Substituted Amphetamines That Produce Long-Term Serotonin Depletion in Rat Brain ("Neurotoxicityâ€) Do Not Decrease Serotonin Transporter Protein Expression. Annals of the New York Academy of Sciences, 2004, 1025, 151-161.	1.8	12
56	High-dose fenfluramine administration decreases serotonin transporter binding, but not serotonin transporter protein levels, in rat forebrain. Synapse, 2003, 50, 233-239.	0.6	56
57	Speed kills: cellular and molecular bases of methamphetamineâ€induced nerve terminal degeneration and neuronal apoptosis. FASEB Journal, 2003, 17, 1775-1788.	0.2	265
58	Methamphetamine Causes Coordinate Regulation of Src, Cas, Crk, and the Jun N-Terminal Kinase–Jun Pathway. Molecular Pharmacology, 2002, 61, 1124-1131.	1.0	63
59	Mice with Partial Deficiency of c-Jun Show Attenuation of Methamphetamine-Induced Neuronal Apoptosis. Molecular Pharmacology, 2002, 62, 993-1000.	1.0	49
60	Amphetamine-induced toxicity in dopamine terminals in CD-1 and C57BL/6J mice: complex roles for oxygen-based species and temperature regulation. Neuroscience, 2001, 107, 265-274.	1.1	43
61	Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Molecular Brain Research, 2001, 90, 202-204.	2.5	14
62	Fas-induced apoptosis of glioma cells is associated with down-regulation of the hSCO1 protein, a subunit of complex IV. Molecular Brain Research, 2001, 91, 131-136.	2.5	9
63	Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41, 40-48.	0.6	99
64	Methamphetamine causes differential regulation of proâ€death and antiâ€death Bclâ€2 genes in the mouse neocortex. FASEB Journal, 2001, 15, 1745-1752.	0.2	149
65	Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (Ecstasy). Neuroscience, 1999, 91, 1379-1387.	1.1	74
66	Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Molecular Brain Research, 1999, 72, 158-165.	2.5	38
67	Methamphetamine-Induced Changes in Antioxidant Enzymes and Lipid Peroxidation in Copper/Zinc-Superoxide Dismutase Transgenic Mice. Annals of the New York Academy of Sciences, 1998, 844, 92-102.	1.8	120