
Artur Kania

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889610/publications.pdf Version: 2024-02-01

Δρτιίς Κλνιλ

#	Article	IF	CITATIONS
1	Mechanisms of ephrin–Eph signalling in development, physiology and disease. Nature Reviews Molecular Cell Biology, 2016, 17, 240-256.	16.1	504
2	Coordinate Roles for LIM Homeobox Genes in Directing the Dorsoventral Trajectory of Motor Axons in the Vertebrate Limb. Cell, 2000, 102, 161-173.	13.5	256
3	Topographic Motor Projections in the Limb Imposed by LIM Homeodomain Protein Regulation of Ephrin-A:EphA Interactions. Neuron, 2003, 38, 581-596.	3.8	256
4	Distinct Roles for Secreted Semaphorin Signaling in Spinal Motor Axon Guidance. Neuron, 2005, 48, 949-964.	3.8	216
5	Requirement of Lim1 for female reproductive tract development. Development (Cambridge), 2004, 131, 539-549.	1.2	182
6	A Postmitotic Role for Isl-Class LIM Homeodomain Proteins in the Assignment of Visceral Spinal Motor Neuron Identity. Neuron, 2004, 41, 337-350.	3.8	177
7	Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord. Neuron, 2017, 94, 790-799.e3.	3.8	146
8	Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. Journal of Cell Biology, 2005, 170, 127-139.	2.3	128
9	Lim1 Activity Is Required for Intermediate Mesoderm Differentiation in the Mouse Embryo. Developmental Biology, 2000, 223, 77-90.	0.9	126
10	Specification of Motor Axon Trajectory by Ephrin-B:EphB Signaling: Symmetrical Control of Axonal Patterning in the Developing Limb. Neuron, 2008, 60, 1039-1053.	3.8	123
11	P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster Genetics, 1995, 139, 1663-1678.	1.2	118
12	Ephrin-Mediated cis-Attenuation of Eph Receptor Signaling Is Essential for Spinal Motor Axon Guidance. Neuron, 2011, 71, 76-91.	3.8	116
13	G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3745-3750.	3.3	105
14	Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord. Development (Cambridge), 2004, 131, 3693-3703.	1.2	95
15	Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death. Cell Reports, 2015, 12, 1099-1106.	2.9	82
16	Foxp1 and Lhx1 Coordinate Motor Neuron Migration with Axon Trajectory Choice by Gating Reelin Signalling. PLoS Biology, 2010, 8, e1000446.	2.6	80
17	Ephrin signalling in the developing nervous system. Current Opinion in Neurobiology, 2014, 27, 16-24.	2.0	73
18	Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons. ELife, 2015. 4	2.8	67

#	Article	IF	CITATIONS
19	Microglia-mediated degradation of perineuronal nets promotes pain. Science, 2022, 377, 80-86.	6.0	52
20	A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Developmental Biology, 2013, 382, 555-566.	0.9	51
21	neuromusculin, a drosophila gene expressed in peripheral neuronal precursors and muscles, encodes a cell adhesion molecule. Neuron, 1993, 11, 673-687.	3.8	48
22	Eph and ephrin signaling: Lessons learned from spinal motor neurons. Seminars in Cell and Developmental Biology, 2012, 23, 83-91.	2.3	43
23	Src Family Kinases Are Required for Limb Trajectory Selection by Spinal Motor Axons. Journal of Neuroscience, 2009, 29, 5690-5700.	1.7	42
24	Identity and fate of <i>Tbx4</i> â€expressing cells reveal developmental cell fate decisions in the allantois, limb, and external genitalia. Developmental Dynamics, 2011, 240, 2290-2300.	0.8	42
25	Genetic Analysis of DSCAM's Role as a Netrin-1 Receptor in Vertebrates. Journal of Neuroscience, 2012, 32, 411-416.	1.7	42
26	Cooperation and crosstalk in axon guidance cue integration: Additivity, synergy, and fineâ€ŧuning in combinatorial signaling. Developmental Neurobiology, 2017, 77, 891-904.	1.5	42
27	Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. Nature Communications, 2018, 9, 4470.	5.8	40
28	Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons. Cell Reports, 2019, 28, 1429-1438.e4.	2.9	40
29	Genetic Evidence for a Contribution of EphA:EphrinA Reverse Signaling to Motor Axon Guidance. Journal of Neuroscience, 2012, 32, 5209-5215.	1.7	38
30	Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6451-6456.	3.3	37
31	Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans. Cell Reports, 2020, 33, 108425.	2.9	35
32	Cell-Type Specific Roles for PTEN in Establishing a Functional Retinal Architecture. PLoS ONE, 2012, 7, e32795.	1.1	34
33	Uncoupling of EphA/ephrinA Signaling and Spontaneous Activity in Neural Circuit Wiring. Journal of Neuroscience, 2013, 33, 18208-18218.	1.7	32
34	EphA4 Receptor Shedding Regulates Spinal Motor Axon Guidance. Current Biology, 2014, 24, 2355-2365.	1.8	32
35	Neogenin May Functionally Substitute for Dcc in Chicken. PLoS ONE, 2011, 6, e22072.	1.1	32
36	Identification of genes controlled by LMX1B in the developing mouse limb bud. Developmental Dynamics, 2008, 237, 1183-1192.	0.8	31

#	Article	IF	CITATIONS
37	Hoxb8 Intersection Defines a Role for <i>Lmx1b</i> in Excitatory Dorsal Horn Neuron Development, Spinofugal Connectivity, and Nociception. Journal of Neuroscience, 2015, 35, 5233-5246.	1.7	31
38	A novel conserved evx1 enhancer links spinal interneuron morphology and cis-regulation from fish to mammals. Developmental Biology, 2009, 325, 422-433.	0.9	29
39	Netrin 1 and Dcc signalling are required for confinement of central axons within the central nervous system. Development (Cambridge), 2014, 141, 594-603.	1.2	27
40	Genome-wide analysis identifies impaired axonogenesis in chronic overlapping pain conditions. Brain, 2022, 145, 1111-1123.	3.7	24
41	A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology, 2019, 29, 1149-1160.e4.	1.8	22
42	Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. Journal of Neuroscience, 2016, 36, 561-576.	1.7	21
43	DCC Is Required for the Development of Nociceptive Topognosis in Mice and Humans. Cell Reports, 2018, 22, 1105-1114.	2.9	21
44	Splice-Mediated Motif Switching Regulates Disabled-1 Phosphorylation and SH2 Domain Interactions. Molecular and Cellular Biology, 2012, 32, 2794-2808.	1.1	19
45	α2-Chimaerin Is Required for Eph Receptor-Class-Specific Spinal Motor Axon Guidance and Coordinate Activation of Antagonistic Muscles. Journal of Neuroscience, 2015, 35, 2344-2357.	1.7	17
46	The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Scientific Reports, 2019, 9, 11945.	1.6	17
47	Ephrin-A5 potentiates netrin-1 axon guidance by enhancing Neogenin availability. Scientific Reports, 2019, 9, 12009.	1.6	17
48	Spinal Motor Neuron Migration and the Significance of Topographic Organization in the Nervous System. Advances in Experimental Medicine and Biology, 2014, 800, 133-148.	0.8	14
49	Robo recruitment of the Wave regulatory complex plays an essential and conserved role in midline repulsion. ELife, 2021, 10, .	2.8	14
50	Immunocytochemical Analysis of Axonal Outgrowth in Synaptotagmin Mutations. Journal of Neurochemistry, 2002, 65, 32-40.	2.1	12
51	Optimisation of in ovo electroporation of the chick neural tube. Journal of Neuroscience Methods, 2011, 201, 381-384.	1.3	12
52	Identification of genes controlled by LMX1B in E13.5 mouse limbs. Developmental Dynamics, 2010, 239, 2246-2255.	0.8	11
53	Characterisation of lamina I anterolateral system neurons that express Cre in a Phox2a-Cre mouse line. Scientific Reports, 2021, 11, 17912.	1.6	11
54	Ephexin1 Is Required for Eph-Mediated Limb Trajectory of Spinal Motor Axons. Journal of Neuroscience, 2018, 38, 2043-2056.	1.7	9

#	Article	IF	CITATIONS
55	Loss of Dcc in the spinal cord is sufficient to cause a deficit in lateralized motor control and the switch to a hopping gait. Developmental Dynamics, 2018, 247, 620-629.	0.8	9
56	Emergence of Motor Circuit Activity. PLoS ONE, 2014, 9, e93836.	1.1	8
57	Mutations in neuromusculin, a gene encoding a cell adhesion molecule, cause nervous system defects. Roux's Archives of Developmental Biology, 1995, 204, 259-270.	1.2	6
58	Examining the combinatorial model of motor neuron survival by expression profiling of trophic factors and their receptors in the embryonic <i>Gallus gallus</i> . Developmental Dynamics, 2010, 239, 965-979.	0.8	6
59	An Automated Strategy for Unbiased Morphometric Analyses and Classifications of Growth Cones In Vitro. PLoS ONE, 2015, 10, e0140959.	1.1	6
60	Netrin-1 receptor DCC is required for the contralateral topography of lamina I anterolateral system neurons. Pain, 2021, 162, 161-175.	2.0	6
61	Concocting Cholinergy. PLoS Genetics, 2014, 10, e1004313.	1.5	4
62	Ephrin/Eph signaling in axon guidance. , 2020, , 123-146.		3
63	Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb. Journal of Neuroscience, 2021, 41, 3808-3821.	1.7	3
64	Spinal lumbar dl2 interneurons contribute to stability of bipedal stepping. ELife, 2021, 10, .	2.8	3
65	Sensational developments in somatosensory development?. Current Opinion in Neurobiology, 2021, 66, 212-223.	2.0	2
66	Netrin1 and reelin signaling are required for the migration of anterolateral system neurons in the embryonic spinal cord. Pain, 2021, Publish Ahead of Print, .	2.0	2
67	Distinct Roles for Secreted Semaphorin Signaling in Spinal Motor Axon Guidance. Neuron, 2006, 49, 319.	3.8	1
68	[P1.40]: Control of myotopic organization of spinal motor neurons by Reelin signaling. International Journal of Developmental Neuroscience, 2008, 26, 854-855.	0.7	1
69	[P2.32]: Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1. International Journal of Developmental Neuroscience, 2008, 26, 877-877.	0.7	1
70	Breathless without Hox. Nature Neuroscience, 2012, 15, 1607-1609.	7.1	1
71	[P2.43]: Netrin signaling coordinates the topography of spinal motor neuron axon projections. International Journal of Developmental Neuroscience, 2008, 26, 881-881.	0.7	0
72	<i>Lmx1b</i> controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord. Development (Cambridge), 2009, 136, 1961-1961.	1.2	0

#	Article	IF	CITATIONS
73	ISDN2014_0393: A role for the transcription factor lmx1b in pain modality discrimination. International Journal of Developmental Neuroscience, 2015, 47, 115-116.	0.7	Ο
74	ISDN2014_0420: Molecular mechanisms of synergistic ephrin–netrin interactions in axon guidance. International Journal of Developmental Neuroscience, 2015, 47, 127-127.	0.7	0
75	ISDN2014_0279: Spinal neuron identity and survival in the absence of neurosecretion. International Journal of Developmental Neuroscience, 2015, 47, 83-83.	0.7	Ο
76	Dorsal horn calretinin neurons mediate pain through a parabrachial ascending pathway. Journal of Pain, 2018, 19, S12.	0.7	0
77	Thomas M. Jessell (1951–2019). Neuroscience, 2020, 450, 1-2.	1.1	Ο
78	A Retino-Retinal Connection Guided by Unc5c Emerged in Species with Retinal Waves. SSRN Electronic Journal, 0, , .	0.4	0