
Richard J Maraia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A versatile tRNA modification-sensitive northern blot method with enhanced performance. Rna, 2022, 28, 418-432.	3.5	6
2	The isolated La-module of LARP1 mediates 3' poly(A) protection and mRNA stabilization, dependent on its intrinsic PAM2 binding to PABPC1. RNA Biology, 2021, 18, 275-289.	3.1	18
3	LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. RNA Biology, 2021, 18, 259-274.	3.1	16
4	The leucine-NH4+ uptake regulator Any1 limits growth as part of a general amino acid control response to loss of La protein by fission yeast. PLoS ONE, 2021, 16, e0253494.	2.5	2
5	A call for direct sequencing of full-length RNAs to identify all modifications. Nature Genetics, 2021, 53, 1113-1116.	21.4	33
6	Single-molecule polyadenylated tail sequencing (SM-PAT-Seq) to measure polyA tail lengths transcriptome-wide. Methods in Enzymology, 2021, 655, 119-137.	1.0	2
7	Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nature Communications, 2021, 12, 5900.	12.8	13
8	The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Research, 2021, 49, 12017-12034.	14.5	21
9	Transcriptome-wide stability analysis uncovers LARP4-mediated NFκB1 mRNA stabilization during TÂcell activation. Nucleic Acids Research, 2020, 48, 8724-8739.	14.5	10
10	Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genetics, 2020, 16, e1008330.	3.5	12
11	Single molecule poly(A) tail-seq shows LARP4 opposes deadenylation throughout mRNA lifespan with most impact on short tails. ELife, 2020, 9, .	6.0	24
12	RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3′ end dynamics during transcription termination. Nucleic Acids Research, 2019, 47, 310-327.	14.5	24
13	La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 361-372.	1.9	24
14	La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Molecular and Cellular Biology, 2017, 37, .	2.3	8
15	The <scp>La</scp> and related <scp>RNA</scp> â€binding proteins (LARPs): structures, functions, and evolving perspectives. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1430.	6.4	99
16	FactorsÂThatÂShapeÂEukaryoticÂtRNAomes: Processing,ÂModificationÂandÂAnticodon–CodonÂUse. Biomolecules, 2017, 7, 26.	4.0	30
17	A novel perivascular cell population in the zebrafish brain. ELife, 2017, 6, .	6.0	77
18	LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. ELife, 2017, 6, .	6.0	43

#	Article	IF	CITATIONS
19	RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends in Biochemical Sciences, 2016, 41, 546-559.	7.5	78
20	Evolving specificity of tRNA 3-methyl-cytidine-32 (m ³ C32) modification: a subset of tRNAs ^{Ser} requires <i>N</i> ⁶ -isopentenylation of A37. Rna, 2016, 22, 1400-1410.	3.5	64
21	LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner. Molecular and Cellular Biology, 2016, 36, 574-584.	2.3	10
22	A high density of cis-information terminates RNA Polymerase III on a 2-rail track. RNA Biology, 2016, 13, 166-171.	3.1	9
23	Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in <i>S. pombe</i> by limiting activity of cytosolic tRNA ^{Tyr} , not mito-tRNA. Rna, 2016, 22, 583-596.	3.5	30
24	Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genetics, 2016, 12, e1006253.	3.5	15
25	Mechanism of Transcription Termination by RNA Polymerase III Utilizes a Non-template Strand Sequence-Specific Signal Element. Molecular Cell, 2015, 58, 1124-1132.	9.7	80
26	TOR-dependent post-transcriptional regulation of autophagy. Autophagy, 2015, 11, 2390-2392.	9.1	11
27	A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulatesÂautophagy. Nature Cell Biology, 2015, 17, 930-942.	10.3	91
28	A transcriptional specialist resolved. Nature, 2015, 528, 204-205.	27.8	13
29	A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis. Gene, 2015, 556, 35-50.	2.2	17
30	Biochemical Analysis of Transcription Termination by RNA Polymerase III from Yeast Saccharomyces cerevisiae. Methods in Molecular Biology, 2015, 1276, 185-198.	0.9	7
31	RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification. PLoS Genetics, 2015, 11, e1005671.	3.5	81
32	Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription, 2014, 5, e27369.	3.1	65
33	Defective i6A37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA. PLoS Genetics, 2014, 10, e1004424.	3.5	112
34	Targeted Deletion of the Gene Encoding the La Autoantigen (Sjögren's Syndrome Antigen B) in B Cells or the Frontal Brain Causes Extensive Tissue Loss. Molecular and Cellular Biology, 2014, 34, 123-131.	2.3	24
35	Different types of secondary information in the genetic code. Rna, 2014, 20, 977-984.	3.5	28
36	Comment on "Mechanism of eukaryotic RNA polymerase III transcription termination― Science, 2014, 345, 524-524.	12.6	19

#	Article	IF	CITATIONS
37	tRNA gene copy number variation in humans. Gene, 2014, 536, 376-384.	2.2	52
38	Transcription termination by the eukaryotic RNA polymerase III. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 318-330.	1.9	98
39	Distinguishing Core and Holoenzyme Mechanisms of Transcription Termination by RNA Polymerase III. Molecular and Cellular Biology, 2013, 33, 1571-1581.	2.3	27
40	Global â€~bootprinting' reveals the elastic architecture of the yeast TFIIIB–TFIIIC transcription complex in vivo. Nucleic Acids Research, 2013, 41, 8135-8143.	14.5	55
41	Lack of tRNA Modification Isopentenyl-A37 Alters mRNA Decoding and Causes Metabolic Deficiencies in Fission Yeast. Molecular and Cellular Biology, 2013, 33, 2918-2929.	2.3	65
42	Human Cells Have a Limited Set of tRNA Anticodon Loop Substrates of the tRNA Isopentenyltransferase TRIT1 Tumor Suppressor. Molecular and Cellular Biology, 2013, 33, 4900-4908.	2.3	42
43	lt's Sno'ing on Pol III at nuclear pores. Genome Biology, 2013, 14, 137.	9.6	2
44	RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Research, 2013, 41, 139-155.	14.5	38
45	Altered nuclear tRNA metabolism in La-deleted <i>Schizosaccharomyces pombe</i> is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p. Molecular Biology of the Cell, 2012, 23, 480-491.	2.1	21
46	tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon:codon wobble pair in a eukaryote. Rna, 2012, 18, 1358-1372.	3.5	47
47	3′ processing of eukaryotic precursor tRNAs. Wiley Interdisciplinary Reviews RNA, 2011, 2, 362-375.	6.4	107
48	Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Research, 2011, 39, 6100-6113.	14.5	35
49	La-Related Protein 4 Binds Poly(A), Interacts with the Poly(A)-Binding Protein MLLE Domain via a Variant PAM2w Motif, and Can Promote mRNA Stability. Molecular and Cellular Biology, 2011, 31, 542-556.	2.3	89
50	Comparative whole genome sequencing reveals phenotypic tRNA gene duplication in spontaneous Schizosaccharomyces pombe La mutants. Nucleic Acids Research, 2011, 39, 4728-4742.	14.5	20
51	Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. Rna, 2011, 17, 1846-1857.	3.5	40
52	Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 365-378.	1.9	128
53	Precursor-product discrimination by La protein during tRNA metabolism. Nature Structural and Molecular Biology, 2009, 16, 430-437.	8.2	57
54	It's a mod mod tRNA world. Nature Chemical Biology, 2008, 4, 162-164.	8.0	12

#	Article	IF	CITATIONS
55	A La-Related Protein Modulates 7SK snRNP Integrity to Suppress P-TEFb-Dependent Transcriptional Elongation and Tumorigenesis. Molecular Cell, 2008, 29, 588-599.	9.7	223
56	Cellular La Protein Shields Nonsegmented Negative-Strand RNA Viral Leader RNA from RIG-I and Enhances Virus Growth by Diverse Mechanisms. Journal of Virology, 2008, 82, 7977-7987.	3.4	53
57	Mutation of RNA Pol III Subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and Disrupts Zebrafish Digestive Development. PLoS Biology, 2007, 5, e312.	5.6	63
58	Conservation of a Masked Nuclear Export Activity of La Proteins and Its Effects on tRNA Maturation. Molecular and Cellular Biology, 2007, 27, 3303-3312.	2.3	31
59	Mouse and Human La Proteins Differ in Kinase Substrate Activity and Activation Mechanism for tRNA Processing. Gene Expression, 2007, 14, 71-81.	1.2	13
60	A Role for TFIIIC Transcription Factor Complex in Genome Organization. Cell, 2006, 125, 859-872.	28.9	275
61	The La Protein-RNA Complex Surfaces. Molecular Cell, 2006, 21, 149-152.	9.7	49
62	Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nature Structural and Molecular Biology, 2006, 13, 611-618.	8.2	76
63	The Multifunctional RNA-Binding Protein La Is Required for Mouse Development and for the Establishment of EmbryonicStem Cells. Molecular and Cellular Biology, 2006, 26, 1445-1451.	2.3	53
64	Mutations in the RNA Polymerase III Subunit Rpc11p That Decrease RNA 3′ Cleavage Activity Increase 3′-Terminal Oligo(U) Length and La-Dependent tRNA Processing. Molecular and Cellular Biology, 2005, 25, 621-636.	2.3	56
65	Human La is found at RNA polymerase III-transcribed genes in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18350-18355.	7.1	47
66	CK2 Is Responsible for Phosphorylation of Human La Protein Serine-366 and Can Modulate rpL37 5′-Terminal Oligopyrimidine mRNA Metabolism. Molecular and Cellular Biology, 2004, 24, 9580-9591.	2.3	62
67	Nonphosphorylated Human La Antigen Interacts with Nucleolin at Nucleolar Sites Involved in rRNA Biogenesis. Molecular and Cellular Biology, 2004, 24, 10894-10904.	2.3	37
68	BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell, 2003, 3, 145-160.	16.8	199
69	Differential Phosphorylation and Subcellular Localization of La RNPs Associated with Precursor tRNAs and Translation-Related mRNAs. Molecular Cell, 2003, 12, 1301-1307.	9.7	109
70	The fission yeast TFIIB-related factor limits RNA polymerase III to a TATA-dependent pathway of TBP recruitment. Nucleic Acids Research, 2003, 31, 2108-2116.	14.5	9
71	RNA Polymerase III from the Fission Yeast, Schizosaccharomyces pombe. Methods in Enzymology, 2003, 370, 165-173.	1.0	4
72	Aberrant Nuclear Trafficking of La Protein Leads to Disordered Processing of Associated Precursor tRNAs. Molecular Cell, 2002, 9, 1113-1123.	9.7	63

#	Article	IF	CITATIONS
73	Methylphosphate Cap Structure in Small RNAs Reduces the Affinity of RNAs to La Protein. Gene Expression, 2002, 10, 243-253.	1.2	20
74	La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expression, 2002, 10, 41-57.	1.2	43
75	Construction of FLAG and histidine tagging vectors forSchizosaccharomyces pombe. Yeast, 2001, 18, 463-468.	1.7	11
76	La Protein and the Trafficking of Nascent RNA Polymerase III Transcripts. Journal of Cell Biology, 2001, 153, F13-F18.	5.2	38
77	Recognition of Nascent RNA by the Human La Antigen: Conserved and Divergent Features of Structure and Function. Molecular and Cellular Biology, 2001, 21, 367-379.	2.3	109
78	Widespread Use of TATA Elements in the Core Promoters for RNA Polymerases III, II, and I in Fission Yeast. Molecular and Cellular Biology, 2001, 21, 6870-6881.	2.3	62
79	Isolation and Cloning of Four Subunits of a Fission Yeast TFIIIC Complex That Includes an Ortholog of the Human Regulatory Protein TFIIICÎ ² . Journal of Biological Chemistry, 2000, 275, 31480-31487.	3.4	26
80	Transcription Termination by RNA Polymerase III in Fission Yeast. Journal of Biological Chemistry, 2000, 275, 29076-29081.	3.4	71
81	Control of Transfer RNA Maturation by Phosphorylation of the Human La Antigen on Serine 366. Molecular Cell, 2000, 6, 339-348.	9.7	92
82	Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neuroscience Letters, 1998, 245, 123-126.	2.1	43
83	Terminator-specific Recycling of a B1-AluTranscription Complex by RNA Polymerase III Is Mediated by the RNA Terminus-binding Protein La. Journal of Biological Chemistry, 1998, 273, 26110-26116.	3.4	28
84	5′ Processing of tRNA Precursors Can Be Modulated by the Human La Antigen Phosphoprotein. Molecular and Cellular Biology, 1998, 18, 3201-3211.	2.3	110
85	A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14. Nucleic Acids Research, 1997, 25, 1117-1122.	14.5	25
86	Phosphorylation of the Human La Antigen on Serine 366 Can Regulate Recycling of RNA Polymerase III Transcription Complexes. Cell, 1997, 88, 707-715.	28.9	111
87	Transcription termination factor La is also an initiation factor for RNA polymerase III Proceedings of the United States of America, 1996, 93, 3383-3387.	7.1	111
88	Monomeric scAlu and nascent dimeric Alu RNAs induced by adenovirus are assembled into SRP9/14-containing RNPs in HeLa cells. Nucleic Acids Research, 1996, 24, 4165-4170.	14.5	51
89	Human Signal Recognition Particle (SRP) Alu-associated Protein Also Binds Alu Interspersed Repeat Sequence RNAs. Journal of Biological Chemistry, 1995, 270, 10179-10186.	3.4	47
90	The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Research, 1994, 22, 3045-3052.	14.5	43

#	Article	IF	CITATIONS
91	The conserved 7SK snRNA gene localizes to human chromosome 6 by homolog exclusion probing of somatic cell hybrid RNA. Nucleic Acids Research, 1994, 22, 722-725.	14.5	6
92	Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Research, 1994, 22, 1087-1095.	14.5	152
93	Transcriptional regulation and transpositional selection of active SINE sequences. Current Opinion in Genetics and Development, 1992, 2, 874-882.	3.3	163
94	Human manganese superoxide dismutase is readily detectable by a copper blotting technique. Biochemical Medicine and Metabolic Biology, 1991, 46, 406-415.	0.7	3
95	The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmic transcripts. Nucleic Acids Research, 1991, 19, 5695-5702.	14.5	74
96	A chromosome 17q <i>de novo</i> paracentric inversion in a patient with campomelic dysplasia; case report and etiologic hypothesis. Clinical Genetics, 1991, 39, 401-408.	2.0	38