Roie Yerushalmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889480/publications.pdf

Version: 2024-02-01

41 papers

2,405 citations

394421 19 h-index 265206 42 g-index

43 all docs

43 docs citations

times ranked

43

3532 citing authors

#	Article	IF	Citations
1	Atomic and Molecular Layer Deposition of Chiral Thin Films Showing up to 99% Spin Selective Transport. Nano Letters, 2022, 22, 5022-5028.	9.1	19
2	Photoreactivity of Deep VB Titania Attained Via Molecular Layer Deposition; Interplay of Metal Oxide Thin Film Built-in Strain and Molecular Effects. Topics in Catalysis, 2021, 64, 297-312.	2.8	3
3	Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport. Nano Letters, 2021, 21, 6496-6503.	9.1	10
4	Layered Si–Ti oxide thin films with tailored electrical and optical properties by catalytic tandem MLD-ALD. RSC Advances, 2021, 11, 35099-35109.	3.6	1
5	Molecular Fingerprint Detection: Molecular Fingerprint Detection Using Portable Waterâ€Compatible Electronic Tunneling Spectroscopy Device (Adv. Mater. Interfaces 19/2020). Advanced Materials Interfaces, 2020, 7, 2070106.	3.7	0
6	Molecular Fingerprint Detection Using Portable Waterâ€Compatible Electronic Tunneling Spectroscopy Device. Advanced Materials Interfaces, 2020, 7, 2000605.	3.7	1
7	Boron Monolayer Doping: Role of Oxide Capping Layer, Molecular Fragmentation, and Doping Uniformity at the Nanoscale. Advanced Materials Interfaces, 2020, 7, 1902198.	3.7	10
8	Broad-band high-gain room temperature photodetectors using semiconductor–metal nanofloret hybrids with wide plasmonic response. Nanoscale, 2019, 11, 6368-6376.	5.6	6
9	Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology. Ultramicroscopy, 2018, 184, 225-233.	1.9	13
10	Diversification of Device Platforms by Molecular Layers: Hybrid Sensing Platforms, Monolayer Doping, and Modeling. Langmuir, 2018, 34, 14103-14123.	3.5	10
11	Direct Dopant Patterning by a Remote Monolayer Doping Enabled by a Monolayer Fragmentation Study. Langmuir, 2017, 33, 5371-5377.	3.5	11
12	Self-formed nanogap junctions for electronic detection and characterization of molecules and quantum dots. RSC Advances, 2017, 7, 25861-25866.	3.6	6
13	1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography. Nano Letters, 2017, 17, 7478-7486.	9.1	4
14	Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy. Nano Letters, 2016, 16, 4490-4500.	9.1	36
15	Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesis. Journal of the American Chemical Society, 2016, 138, 4079-4086.	13.7	11
16	Oxygen-Deficient Titania with Adjustable Band Positions and Defects; Molecular Layer Deposition of Hybrid Organic–Inorganic Thin Films as Precursors for Enhanced Photocatalysis. Journal of Physical Chemistry C, 2016, 120, 3853-3862.	3.1	36
17	Surface modification of metal oxides by polar molecules in a non-polar, polarizable solvent system. Chemical Communications, 2014, 50, 5397.	4.1	32
18	Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen. Journal of Materials Chemistry A, 2014, 2, 13822-13826.	10.3	79

#	Article	IF	Citations
19	Tailor-made oxide architectures attained by molecularly permeable metal-oxide organic hybrid thin films. Chemical Communications, 2014, 50, 9176-9178.	4.1	8
20	Parallel p–n Junctions across Nanowires by One-Step <i>Ex Situ</i> Doping. ACS Nano, 2014, 8, 8357-8362.	14.6	31
21	Facile Monolayer Formation on SiO ₂ Surfaces via Organoboron Functionalities. Angewandte Chemie - International Edition, 2013, 52, 7415-7418.	13.8	18
22	Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds. Journal of Visualized Experiments, 2013, , 50770.	0.3	8
23	Contact Doping of Silicon Wafers and Nanostructures with Phosphine Oxide Monolayers. ACS Nano, 2012, 6, 10311-10318.	14.6	50
24	Transformation of Organic–Inorganic Hybrid Films Obtained by Molecular Layer Deposition to Photocatalytic Layers with Enhanced Activity. ACS Nano, 2012, 6, 7263-7269.	14.6	45
25	Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials, 2009, 21, 3730-3743.	21.0	363
26	Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing. Nano Letters, 2009, 9, 725-730.	9.1	148
27	Phosphine Oxide Monolayers on SiO ₂ Surfaces. Angewandte Chemie - International Edition, 2008, 47, 4440-4442.	13.8	37
28	Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Materials, 2008, 7, 62-67.	27.5	311
29	Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Letters, 2008, 8, 20-25.	9.1	542
30	Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Applied Physics Letters, 2007, 91, .	3.3	117
31	Generic Nanomaterial Positioning by Carrier and Stationary Phase Design. Nano Letters, 2007, 7, 2764-2768.	9.1	23
32	Chemical Site Capacitance:  Submolecular Measurements and a Model. Journal of Physical Chemistry C, 2007, 111, 13652-13654.	3.1	4
33	Modulation of Fragmental Charge Transfer via Hydrogen Bonds. Direct Measurement of Electronic Contributionsâ€. Journal of Physical Chemistry A, 2006, 110, 412-421.	2.5	12
34	Submolecular Potential Profiling Across Organic Monolayers. Nano Letters, 2006, 6, 2848-2851.	9.1	21
35	Stimuli responsive materials: new avenues toward smart organic devices. Journal of Materials Chemistry, 2005, 15, 4480.	6.7	185
36	Uniform Approach to Bacteriochlorophyll-Based Monolayers on Conducting, Semiconducting, and Insulating Substrates. Journal of Physical Chemistry B, 2005, 109, 6933-6935.	2.6	7

#	Article	IF	CITATIONS
37	Direct Experimental Evaluation of Charge Scheme Performance by a Molecular Charge-Meter. Journal of the American Chemical Society, 2004, 126, 5897-5905.	13.7	31
38	Enhancement of Molecular Properties in Thin Films by Controlled Orientation of Molecular Building Blocks. Journal of the American Chemical Society, 2004, 126, 2700-2701.	13.7	71
39	An Experimental Look into Subelectron Charge Flow. Journal of the American Chemical Society, 2003, 125, 12706-12707.	13.7	7
40	Mutual Control of Axial and Equatorial Ligands:Â Model Studies with [Ni]-Bacteriochlorophyll-a. Journal of the American Chemical Society, 2002, 124, 8406-8415.	13.7	19
41	Optical Absorption and Computational Studies of [Ni]-Bacteriochlorophyll-a. New Insight into Charge Distribution between Metal and Ligands. Journal of the American Chemical Society, 2000, 122, 3937-3944.	13.7	38