Valeriy Y Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 2016, 537, 45-60.	2.3	349
2	Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 2004, 40, .	1.7	268
3	Surfaceâ€subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 2014, 50, 1531-1549.	1.7	222
4	Simulation of future climate scenarios with a weather generator. Advances in Water Resources, 2011, 34, 448-467.	1.7	214
5	Vegetationâ€hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resources Research, 2008, 44, .	1.7	184
6	Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 327-368.	2.8	163
7	Hysteresis of soil moisture spatial heterogeneity and the "homogenizing―effect of vegetation. Water Resources Research, 2010, 46, .	1.7	139
8	Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology, 2019, 107, 318-333.	1.9	133
9	Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Advances in Water Resources, 2012, 37, 104-126.	1.7	116
10	Uncertainty partition challenges the predictability of vital details of climate change. Earth's Future, 2016, 4, 240-251.	2.4	98
11	Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. Journal of Hydrology, 2011, 409, 483-496.	2.3	95
12	On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrological Processes, 2005, 19, 2101-2122.	1.1	88
13	Vegetationâ€hydrology dynamics in complex terrain of semiarid areas: 2. Energyâ€water controls of vegetation spatiotemporal dynamics and topographic niches of favorability. Water Resources Research, 2008, 44, .	1.7	88
14	A weather generator for hydrological, ecological, and agricultural applications. Water Resources Research, 2007, 43, .	1.7	87
15	Speciesâ€specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2292-2311.	1.3	76
16	Interannual variability of evapotranspiration and vegetation productivity. Water Resources Research, 2014, 50, 3275-3294.	1.7	71
17	Extending the Predictability of Hydrometeorological Flood Events Using Radar Rainfall Nowcasting. Journal of Hydrometeorology, 2006, 7, 660-677.	0.7	69
18	Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several landâ€surface models: An NACP analysis. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1458-1473.	1.3	69

VALERIY Y IVANOV

#	Article	IF	CITATIONS
19	Ageâ€dependent leaf physiology and consequences for crownâ€scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist, 2018, 219, 870-884.	3.5	66
20	Contrasting Hydraulic Strategies during Dry Soil Conditions in Quercus rubra and Acer rubrum in a Sandy Site in Michigan. Forests, 2013, 4, 1106-1120.	0.9	65
21	Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resources Research, 2012, 48, .	1.7	61
22	Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale. Water Resources Research, 2013, 49, 5134-5154.	1.7	61
23	Effects of initialization on response of a fully-distributed hydrologic model. Journal of Hydrology, 2008, 352, 107-125.	2.3	58
24	Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ€induced drought. New Phytologist, 2019, 223, 1253-1266.	3.5	58
25	Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resources Research, 2015, 51, 3505-3524.	1.7	56
26	Hydraulic resistance to overland flow on surfaces with partially submerged vegetation. Water Resources Research, 2012, 48, .	1.7	48
27	Climate change and uncertainty assessment over a hydroclimatic transect of Michigan. Stochastic Environmental Research and Risk Assessment, 2016, 30, 923-944.	1.9	47
28	On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield. Water Resources Research, 2014, 50, 1025-1045.	1.7	46
29	Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2557-2571.	2.7	43
30	Crossâ€scale impact of climate temporal variability on ecosystem water and carbon fluxes. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1716-1740.	1.3	38
31	Dryâ€Season Greening and Water Stress in Amazonia: The Role of Modeling Leaf Phenology. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1909-1926.	1.3	37
32	Estimation of Evapotranspiration of Amazon Rainforest Using the Maximum Entropy Production Method. Geophysical Research Letters, 2019, 46, 1402-1412.	1.5	37
33	A holistic, multi-scale dynamic downscaling framework for climate impact assessments and challenges of addressing finer-scale watershed dynamics. Journal of Hydrology, 2015, 522, 645-660.	2.3	30
34	Embedding landscape processes into triangulated terrain models. International Journal of Geographical Information Science, 2005, 19, 429-457.	2.2	29
35	Environmental stochasticity controls soil erosion variability. Scientific Reports, 2016, 6, 22065.	1.6	26
36	Soil erosion assessment—Mind the gap. Geophysical Research Letters, 2016, 43, 12,446.	1.5	24

VALERIY Y IVANOV

#	Article	IF	CITATIONS
37	On the non-uniqueness of the hydro-geomorphic responses in a zero-order catchment with respect to soil moisture. Advances in Water Resources, 2016, 92, 73-89.	1.7	21
38	Breaking Down the Computational Barriers to Realâ€īime Urban Flood Forecasting. Geophysical Research Letters, 2021, 48, e2021GL093585.	1.5	21
39	Streamflow, stomata, and soil pits: Sources of inference for complex models with fast, robust uncertainty quantification. Advances in Water Resources, 2019, 125, 13-31.	1.7	19
40	A Novel Modeling Framework for Computationally Efficient and Accurate Realâ€Time Ensemble Flood Forecasting With Uncertainty Quantification. Water Resources Research, 2020, 56, e2019WR025727.	1.7	15
41	On the use of observations in assessment of multi-model climate ensemble. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1923-1937.	1.9	14
42	Climate Change Impacts on Net Ecosystem Productivity in a Subtropical Shrubland of Northwestern México. Journal of Geophysical Research C: Biogeosciences, 2018, 123, 688-711.	1.3	13
43	Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia, 2021, 197, 13-24.	0.9	13
44	Surface Energy Budgets of Arctic Tundra During Growing Season. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6999-7017.	1.2	10
45	Peak Runoff Timing Is Linked to Global Warming Trajectories. Earth's Future, 2021, 9, e2021EF002083.	2.4	10
46	Interannual Variability and Seasonality of Precipitation in the Indus River Basin. Journal of Hydrometeorology, 2019, 20, 379-395.	0.7	5
47	A framework for estimating water ingress due to hurricane rainfall. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 221, 104891.	1.7	2
48	Spatiotemporal dynamics of encroaching tall vegetation in timberline ecotone of the Polar Urals region, Russia. Environmental Research Letters, 0, , .	2.2	1
49	Thank You to Our 2018 Peer Reviewers. Geophysical Research Letters, 2019, 46, 12608-12636.	1.5	0
50	Thank You to Our 2019 Peer Reviewers. Geophysical Research Letters, 2020, 47, e2020GL088048.	1.5	0
51	Thank You to Our 2020 Peer Reviewers. Geophysical Research Letters, 2021, 48, e2021GL093126.	1.5	0
52	Thank You to Our 2021 Peer Reviewers. Geophysical Research Letters, 2022, 49, .	1.5	0