List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4889003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turgor loss point and vulnerability to xylem embolism predict speciesâ€specific risk of droughtâ€induced decline of urban trees. Plant Biology, 2022, 24, 1198-1207.	1.8	7
2	High spatial heterogeneity of water stress levels in RefoÅ _i k grapevines cultivated in Classical Karst. Agricultural Water Management, 2022, 260, 107288.	2.4	4
3	Alpine dwarf shrubs show high proportions of nonfunctional xylem: Visualization and quantification of speciesâ€specific patterns. Plant, Cell and Environment, 2022, 45, 55-68.	2.8	1
4	No Evidence for Light-Induced Embolism Repair in Cut Stems of Drought-Resistant Mediterranean Species under Soaking. Plants, 2022, 11, 307.	1.6	5
5	Hard and tough: the coordination between leaf mechanical resistance and drought tolerance. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 288, 152023.	0.6	21
6	Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 2022, 3, 294-308.	12.2	163
7	Water â€~on the rocks': a summer drink for thirsty trees?. New Phytologist, 2021, 229, 199-212.	3.5	29
8	The extraâ€vascular water pathway regulates dynamic leaf hydraulic decline and recovery in <i>Populus nigra</i> . Physiologia Plantarum, 2021, 172, 29-40.	2.6	13
9	Chemical inhibition of xylem cellular activity impedes the removal of droughtâ€induced embolisms in poplar stems – new insights from micro T analysis. New Phytologist, 2021, 229, 820-830.	3.5	30
10	Shadeâ€induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in <i>Populus nigra</i> . New Phytologist, 2021, 231, 108-121.	3.5	34
11	Functional differentiation of invasive and native plants along a leaf efficiency/safety trade-off. Environmental and Experimental Botany, 2021, 188, 104518.	2.0	14
12	Can trees harden up to survive global change-type droughts?. Tree Physiology, 2021, 41, 2004-2007.	1.4	3
13	Too dry to survive: Leaf hydraulic failure in two Salvia species can be predicted on the basis of water content. Plant Physiology and Biochemistry, 2021, 166, 215-224.	2.8	13
14	Stem Photosynthesis Affects Hydraulic Resilience in the Deciduous Populusalba but Not in the Evergreen Laurus nobilis. Water (Switzerland), 2021, 13, 2911.	1.2	6
15	The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. International Journal of Molecular Sciences, 2020, 21, 144.	1.8	76
16	More nature in the city. Plant Biosystems, 2020, 154, 1003-1006.	0.8	21
17	Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems. Tree Physiology, 2020, 40, 1043-1057.	1.4	15
18	Analysis of Non-Structural Carbohydrates and Xylem Anatomy of Leaf Petioles Offers New Insights in the Drought Response of Two Grapevine Cultivars. International Journal of Molecular Sciences, 2020, 21, 1457.	1.8	25

ANDREA NARDINI

#	Article	IF	CITATIONS
19	A Leaf Selfie: Using a Smartphone to Quantify Leaf Vulnerability to Hydraulic Dysfunction. Plants, 2020, 9, 234.	1.6	6
20	Water relations of two Sicilian grapevine cultivars in response to potassium availability and drought stress. Plant Physiology and Biochemistry, 2020, 148, 282-290.	2.8	23
21	Correlation of Field-Measured and Remotely Sensed Plant Water Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline. Forests, 2020, 11, 77.	0.9	36
22	Functional Divergence Drives Invasibility of Plant Communities at the Edges of a Resource Availability Gradient. Diversity, 2020, 12, 148.	0.7	12
23	Less safety for more efficiency: water relations and hydraulics of the invasive treeAilanthus altissima(Mill.) Swingle compared with nativeFraxinus ornusL Tree Physiology, 2019, 39, 76-87.	1.4	36
24	Grapevine water relations and rooting depth in karstic soils. Science of the Total Environment, 2019, 692, 669-675.	3.9	12
25	Hydraulics in the 21 st century. New Phytologist, 2019, 224, 537-542.	3.5	44
26	Non-structural carbohydrate and hydraulic dynamics during drought and recovery in Fraxinus ornus and Ostrya carpinifolia saplings. Plant Physiology and Biochemistry, 2019, 145, 1-9.	2.8	38
27	Close to the edge: effects of repeated severe drought on stem hydraulics and non-structural carbohydrates in European beech saplings. Tree Physiology, 2019, 39, 717-728.	1.4	24
28	Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. Tree Physiology, 2019, 39, 1675-1684.	1.4	38
29	Hydraulic recovery from xylem embolism in excised branches of twelve woody species: Relationships with parenchyma cells and non-structural carbohydrates. Plant Physiology and Biochemistry, 2019, 139, 513-520.	2.8	48
30	A simplified framework for fast and reliable measurement of leaf turgor loss point. Plant Physiology and Biochemistry, 2019, 139, 395-399.	2.8	22
31	Make it simpler: Alien species decrease functional diversity of coastal plant communities. Journal of Vegetation Science, 2019, 30, 498-509.	1.1	52
32	Plasticity of functional traits of tree of heaven is higher in exotic than in native habitats. Trees - Structure and Function, 2019, 33, 411-420.	0.9	9
33	Insights from <i>inÂvivo</i> microâ€ <scp>CT</scp> analysis: testing the hydraulic vulnerability segmentation in <i>Acer pseudoplatanus</i> and <i>Fagus sylvatica</i> seedlings. New Phytologist, 2019, 221, 1831-1842.	3.5	53
34	OUP accepted manuscript. , 2019, 7, coz012.		10
35	Xylem embolism refilling and resilience against droughtâ€induced mortality in woody plants: processes and tradeâ€offs. Ecological Research, 2018, 33, 839-855.	0.7	116
36	Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont. Planta, 2018, 247, 705-714.	1.6	10

ANDREA NARDINI

#	Article	IF	CITATIONS
37	Postâ€fire effects in xylem hydraulics of <i>Picea abies</i> , <i> Pinus sylvestris</i> and <i>Fagus sylvatica</i> . New Phytologist, 2018, 217, 1484-1493.	3.5	41
38	Xylem sap chemistry: seasonal changes in timberline conifers Pinus cembra, Picea abies, and Larix decidua. Biologia Plantarum, 2018, 62, 157-165.	1.9	26
39	Vineyard water relations in a karstic area: deep roots and irrigation management. Agriculture, Ecosystems and Environment, 2018, 263, 53-59.	2.5	22
40	The pitfalls of <i>inÂvivo</i> imaging techniques: evidence for cellular damage caused by synchrotron Xâ€ray computed microâ€tomography. New Phytologist, 2018, 220, 104-110.	3.5	40
41	Drought Stress and the Recovery from Xylem Embolism in Woody Plants. Progress in Botany Fortschritte Der Botanik, 2017, , 197-231.	0.1	14
42	Morpho-anatomical and physiological traits in saplings of drought-tolerant Mediterranean woody species. Trees - Structure and Function, 2017, 31, 1137-1148.	0.9	22
43	Drought-induced embolism in stems of sunflower: A comparison of inÂvivo micro-CT observations and destructive hydraulic measurements. Plant Physiology and Biochemistry, 2017, 120, 24-29.	2.8	33
44	Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure. Plant Physiology and Biochemistry, 2017, 120, 232-241.	2.8	52
45	Sampling intraspecific variability in leaf functional traits: Practical suggestions to maximize collected information. Ecology and Evolution, 2017, 7, 11236-11245.	0.8	25
46	Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Scientific Reports, 2017, 7, 14308.	1.6	55
47	Xâ€ray microtomography observations of xylem embolism in stems of <i>Laurus nobilis</i> are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist, 2017, 213, 1068-1075.	3.5	60
48	OUP accepted manuscript. Tree Physiology, 2017, 37, 523-535.	1.4	36
49	Plasticity in leafâ€level water relations of tropical rainforest trees in response to experimental drought. New Phytologist, 2016, 211, 477-488.	3.5	62
50	Weak tradeoff between xylem safety and xylemâ€ s pecific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.	3.5	466
51	Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. Plant Physiology and Biochemistry, 2016, 106, 198-207.	2.8	70
52	Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in <i>Pinus pinea</i> L Tree Physiology, 2016, 36, 1019-1031.	1.4	48
53	The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. Journal of Experimental Botany, 2016, 67, 5029-5039.	2.4	70
54	Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in <i>Fraxinus ornus</i> trees. Tree Physiology, 2016, 36, 1310-1319.	1.4	33

ANDREA NARDINI

#	Article	IF	CITATIONS
55	On research priorities to advance understanding of the safety–efficiency tradeoff in xylem. New Phytologist, 2016, 211, 1156-1158.	3.5	21
56	Elevational trends in hydraulic efficiency and safety of Pinus cembra roots. Oecologia, 2016, 180, 1091-1102.	0.9	11
57	Drought versus heat: What's the major constraint on Mediterranean green roof plants?. Science of the Total Environment, 2016, 566-567, 753-760.	3.9	35
58	Leaf hydraulic vulnerability protects stem functionality under drought stress in Salvia officinalis. Functional Plant Biology, 2016, 43, 370.	1.1	29
59	Rooting depth, water relations and nonâ€structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell and Environment, 2016, 39, 618-627.	2.8	126
60	Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports, 2015, 5, 12449.	1.6	245
61	Does shallow substrate improve water status of plants growing on green roofs? Testing the paradox in two sub-Mediterranean shrubs. Ecological Engineering, 2015, 84, 292-300.	1.6	19
62	Droughtâ€induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?. New Phytologist, 2015, 205, 1106-1116.	3.5	111
63	Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations. AoB PLANTS, 2015, 7, .	1.2	44
64	Aquaporins in Coffea arabica L.: Identification, expression, and impacts on plant water relations and hydraulics. Plant Physiology and Biochemistry, 2015, 95, 92-102.	2.8	30
65	Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiology, 2015, 35, 694-705.	1.4	75
66	Water relations of an invasive halophyte (Spartina patens): osmoregulation and ionic effects on xylem hydraulics. Functional Plant Biology, 2015, 42, 264.	1.1	16
67	Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low <scp>PLC</scp> values. Plant, Cell and Environment, 2014, 37, 2491-2499.	2.8	94
68	Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of <i>Vitis vinifera</i> . Physiologia Plantarum, 2014, 152, 453-464.	2.6	68
69	The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. Environmental and Experimental Botany, 2014, 103, 68-79.	2.0	96
70	Does short-term potassium fertilization improve recovery from drought stress in laurel?. Tree Physiology, 2014, 34, 906-913.	1.4	23
71	From systematic to ecological wood anatomy and finally plant hydraulics: are we making progress in understanding xylem evolution?. New Phytologist, 2014, 203, 12-15.	3.5	14
72	When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, 2014, 41, 972.	1.1	43

#	Article	IF	CITATIONS
73	Leaf hydraulic capacity and drought vulnerability: possible tradeâ€offs and correlations with climate across three major biomes. Functional Ecology, 2014, 28, 810-818.	1.7	112
74	Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens. Tree Physiology, 2014, 34, 109-122.	1.4	69
75	Green roofs for a drier world: Effects of hydrogel amendment on substrate and plant water status. Science of the Total Environment, 2014, 490, 467-476.	3.9	51
76	Impact of different green roof layering on plant water status and drought survival. Ecological Engineering, 2013, 57, 188-196.	1.6	49
77	Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecology, 2013, 6, 397-407.	0.7	18
78	Hydraulic engineering of the angiosperm leaf: do the Baileyan trends in perforation plate evolution account for the origin of high vein density?. New Phytologist, 2013, 199, 627-629.	3.5	7
79	Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytologist, 2013, 200, 322-329.	3.5	176
80	Effects of NaCl addition to the growing medium on plant hydraulics and water relations of tomato. Functional Plant Biology, 2013, 40, 459.	1.1	9
81	Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiology, 2012, 32, 1434-1441.	1.4	40
82	Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure - function relationships of sun and shade leaves. Functional Plant Biology, 2012, 39, 394.	1.1	25
83	Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.	13.7	1,944
84	Tradeâ€offs between leaf hydraulic capacity and drought vulnerability: morphoâ€anatomical bases, carbon costs and ecological consequences. New Phytologist, 2012, 196, 788-798.	3.5	161
85	Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: shrubs versus herbaceous plants. Urban Ecosystems, 2012, 15, 697-708.	1.1	93
86	Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L Tree Physiology, 2011, 31, 131-138.	1.4	69
87	Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis. Functional Plant Biology, 2011, 38, 606.	1.1	32
88	Refilling embolized xylem conduits: Is it a matter of phloem unloading?. Plant Science, 2011, 180, 604-611.	1.7	321
89	Do quantitative vessel and pit characters account for ionâ€mediated changes in the hydraulic conductance of angiosperm xylem?. New Phytologist, 2011, 189, 218-228.	3.5	74
90	More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. Journal of Experimental Botany, 2011, 62, 4701-4718.	2.4	138

#	Article	IF	CITATIONS
91	Pit membrane chemistry influences the magnitude of ion-mediated enhancement of xylem hydraulic conductance in four Lauraceae species. Tree Physiology, 2011, 31, 48-58.	1.4	33
92	A tracheomycosis as a tool for studying the impact of stem xylem dysfunction on leaf water status and gas exchange in Citrus aurantium L Trees - Structure and Function, 2010, 24, 327-333.	0.9	8
93	Leafminers help us understanding leaf hydraulic design. Plant, Cell and Environment, 2010, 33, 1091-100.	2.8	40
94	Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiology, 2010, 30, 628-635.	1.4	63
95	Leaf hydraulic architecture and water relations of three ferns from contrasting light habitats. Functional Plant Biology, 2010, 37, 566.	1.1	22
96	The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. Tree Physiology, 2009, 29, 529-539.	1.4	29
97	Effects of reduced irradiance on hydraulic architecture and water relations of two olive clones with different growth potentials. Environmental and Experimental Botany, 2009, 66, 249-256.	2.0	25
98	Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair?. Functional Plant Biology, 2009, 36, 815.	1.1	166
99	Changes of pH of solutions during perfusion through stem segments: further evidence for hydrogel regulation of xylem hydraulic properties?. Biologia Plantarum, 2008, 52, 502-506.	1.9	8
100	Vein recovery from embolism occurs under negative pressure in leaves of sunflower (<i>Helianthus) Tj ETQq0 0 (</i>	0 rgBT /Ov 2.6	erlock 10 Tf 5
101	Heterogeneity of gas exchange rates over the leaf surface in tobacco: an effect of hydraulic architecture?. Plant, Cell and Environment, 2008, 31, 804-812.	2.8	32
102	Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. Tree Physiology, 2008, 28, 1505-1512.	1.4	48
103	Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. Journal of Experimental Botany, 2007, 58, 2609-2615.	2.4	63
104	Reduced Content of Homogalacturonan Does Not Alter the Ion-Mediated Increase in Xylem Hydraulic Conductivity in Tobacco. Plant Physiology, 2007, 143, 1975-1981.	2.3	15
105	Seasonal changes in the ion-mediated increase of xylem hydraulic conductivity in stems of three evergreens: any functional role?. Physiologia Plantarum, 2007, 129, 597-606.	2.6	31
106	Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiologia Plantarum, 2007, 130, 543-551.	2.6	43
107	Hydraulic kinetics of the graft union in different Olea europaea L. scion/rootstock combinations. Environmental and Experimental Botany, 2007, 60, 245-250.	2.0	21
108	Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L Trees - Structure and Function, 2007, 21, 549-556.	0.9	45

#	Article	IF	CITATIONS
109	Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency?. Tree Physiology, 2006, 26, 1137-1144.	1.4	53
110	lon-mediated increase in the hydraulic conductivity of Laurel stems: role of pits and consequences for the impact of cavitation on water transport. Plant, Cell and Environment, 2006, 29, 1946-1955.	2.8	67
111	Seasonal changes of plant hydraulics, water relations and growth of Aesculus hippocastanum seedlings infested by the leafminer Cameraria ohridella. Annals of Forest Science, 2005, 62, 99-104.	0.8	10
112	Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot). Plant, Cell and Environment, 2005, 28, 750-759.	2.8	118
113	The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response?. Journal of Experimental Botany, 2005, 56, 737-744.	2.4	119
114	Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees. Tree Physiology, 2005, 25, 505-512.	1.4	76
115	Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange. Journal of Experimental Botany, 2005, 56, 3093-3101.	2.4	60
116	Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Functional Plant Biology, 2005, 32, 953.	1.1	71
117	Drought resistance of Ailanthus altissima: root hydraulics and water relations. Tree Physiology, 2004, 24, 107-114.	1.4	71
118	Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs. Journal of Experimental Botany, 2004, 55, 1549-1556.	2.4	25
119	New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L Plant, Cell and Environment, 2004, 27, 1065-1076.	2.8	238
120	Hydraulic architecture of leaf blades: where is the main resistance?. Plant, Cell and Environment, 2004, 27, 1257-1267.	2.8	159
121	Impact of the leaf miner Cameraria ohridella on whole-plant photosynthetic productivity of Aesculus hippocastanum: insights from a model. Trees - Structure and Function, 2004, 18, 714-721.	0.9	39
122	Resistance to water flow through leaves of Coffea arabica is dominated by extra-vascular tissues. Functional Plant Biology, 2004, 31, 1161.	1.1	47
123	Effects of defoliation caused by the leaf miner Cameraria ohridella on wood production and efficiency in Aesculus hippocastanum growing in north-eastern Italy. Trees - Structure and Function, 2003, 17, 367-375.	0.9	74
124	Impact of the leaf miner Cameraria ohridella on photosynthesis, water relations and hydraulics of Aesculus hippocastanum leaves. Trees - Structure and Function, 2003, 17, 376-382.	0.9	59
125	Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L Trees - Structure and Function, 2003, 17, 529-534.	0.9	95
126	Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree). Physiologia Plantarum, 2003, 117, 186-194.	2.6	65

#	Article	IF	CITATIONS
127	Vein cavitation and stomatal behaviour of sunflower (Helianthus annuus) leaves under water limitation. Physiologia Plantarum, 2003, 119, 409-417.	2.6	48
128	Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics?. Plant, Cell and Environment, 2003, 26, 1749-1758.	2.8	54
129	Kinetics of recovery of leaf hydraulic conductance and vein functionality from cavitation-induced embolism in sunflower. Journal of Experimental Botany, 2003, 54, 2323-2330.	2.4	59
130	Effects of the experimental blockage of the major veins on hydraulics and gas exchange of Prunus laurocerasus L. leaves. Journal of Experimental Botany, 2003, 54, 1213-1219.	2.4	53
131	Water relations and hydraulic characteristics of three woody species co-occurring in the same habitat. Annals of Forest Science, 2003, 60, 297-305.	0.8	46
132	Changes in Stem and Leaf Hydraulics Preceding Leaf Shedding in Castanea Sativa L Biologia Plantarum, 2002, 45, 227-234.	1.9	48
133	Vulnerability to cavitation of leaf minor veins: any impact on leaf gas exchange?. Plant, Cell and Environment, 2001, 24, 851-859.	2.8	104
134	Are Sclerophylls and Malacophylls Hydraulically Different?. Biologia Plantarum, 2001, 44, 239-245.	1.9	55
135	Xylem Cavitation in the Leaf of Prunus laurocerasusand Its Impact on Leaf Hydraulics. Plant Physiology, 2001, 125, 1700-1709.	2.3	202
136	Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.). Plant, Cell and Environment, 2000, 23, 71-79.	2.8	254
137	Title is missing!. Plant Ecology, 2000, 148, 139-147.	0.7	75
138	Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation?. Trees - Structure and Function, 2000, 15, 14-24.	0.9	293
139	Root and shoot hydraulic conductance of seven Quercus species. Annales Des Sciences Forestières, 1999, 56, 371-377.	1.1	93
140	Refilling of Embolized Vessels in Young Stems of Laurel. Do We Need a New Paradigm?1. Plant Physiology, 1999, 120, 11-22.	2.3	300
141	Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytologist, 1999, 143, 485-493.	3.5	87
142	Competitive strategies for water availability in two Mediterranean Quercus species. Plant, Cell and Environment, 1999, 22, 109-116.	2.8	108
143	Title is missing!. Plant Ecology, 1998, 139, 81-90.	0.7	23
144	Changes in root hydraulic conductance (KR) of Olea oleaster seedlings following drought stress and irrigation. New Phytologist, 1998, 140, 25-31.	3.5	101

#	Article	IF	CITATIONS
145	Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees. Plant, Cell and Environment, 1997, 20, 1381-1390.	2.8	83
146	Green roof irrigation management based on substrate water potential assures water saving without affecting plant physiological performance. Ecohydrology, 0, , .	1.1	1