
Alexander Visekruna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4888977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications, 2019, 10, 760.	12.8	275
2	Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nature Communications, 2021, 12, 4077.	12.8	222
3	Heterogeneity in the Differentiation and Function of CD8+ T Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 449-458.	2.3	214
4	IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. Journal of Clinical Investigation, 2013, 123, 247-260.	8.2	199
5	The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4+ T Cells. Frontiers in Immunology, 2017, 8, 1036.	4.8	193
6	Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Scientific Reports, 2018, 8, 14430.	3.3	181
7	Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut, 2010, 59, 896-906.	12.1	150
8	Proteasome-mediated degradation of lκBα and processing of p105 in Crohn disease and ulcerative colitis. Journal of Clinical Investigation, 2006, 116, 3195-3203.	8.2	146
9	Shortâ€chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. European Journal of Immunology, 2019, 49, 842-848.	2.9	116
10	câ€Rel is crucial for the induction of Foxp3 ⁺ regulatory CD4 ⁺ T cells but not T _H 17 cells. European Journal of Immunology, 2010, 40, 671-676.	2.9	79
11	Exploring the Molecular Mechanisms Underlying the Protective Effects of Microbial SCFAs on Intestinal Tolerance and Food Allergy. Frontiers in Immunology, 2020, 11, 1225.	4.8	64
12	Tc9 cells, a new subset of CD8 ⁺ T cells, support Th2â€mediated airway inflammation. European Journal of Immunology, 2013, 43, 606-618.	2.9	58
13	Functional heterogeneity of gutâ€resident regulatory T cells. Clinical and Translational Immunology, 2017, 6, e156.	3.8	58
14	IL-17 and TNF-α Are Key Mediators of Moraxella catarrhalis Triggered Exacerbation of Allergic Airway Inflammation. Frontiers in Immunology, 2017, 8, 1562.	4.8	58
15	The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 703218.	3.7	55
16	A Key Role for NF- <i>κ</i> B Transcription Factor c-Rel in T-Lymphocyte-Differentiation and Effector Functions. Clinical and Developmental Immunology, 2012, 2012, 1-9.	3.3	54
17	rKLO8, a Novel Leishmania donovani – Derived Recombinant Immunodominant Protein for Sensitive Detection of Visceral Leishmaniasis in Sudan. PLoS Neglected Tropical Diseases, 2013, 7, e2322.	3.0	52
18	Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47

#	Article	IF	CITATIONS
19	Prevention of colitis-associated cancer by selective targeting of immunoproteasome subunit LMP7. Oncotarget, 2017, 8, 50447-50459.	1.8	46
20	Immunoproteasomes Are Essential for Clearance of <i>Listeria monocytogenes</i> in Nonlymphoid Tissues but Not for Induction of Bacteria-Specific CD8+ T Cells. Journal of Immunology, 2006, 177, 6238-6244.	0.8	44
21	Comparative expression analysis and characterization of 20S proteasomes in human intestinal tissues. Inflammatory Bowel Diseases, 2009, 15, 526-533.	1.9	39
22	Expression of catalytic proteasome subunits in the gut of patients with Crohn's disease. International Journal of Colorectal Disease, 2009, 24, 1133-1139.	2.2	38
23	Beyond Epithelial to Mesenchymal Transition: A Novel Role for the Transcription Factor Snail in Inflammation and Wound Healing. Journal of Gastrointestinal Surgery, 2010, 14, 388-397.	1.7	36
24	Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota. Gut Microbes, 2020, 12, 1829962.	9.8	35
25	IKK-induced NF-κB1 p105 proteolysis is critical for B cell antibody responses to T cell–dependent antigen. Journal of Experimental Medicine, 2014, 211, 2085-2101.	8.5	28
26	Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nature Communications, 2015, 6, 8576.	12.8	27
27	Genetic and pharmacological targeting of TPL-2 kinase ameliorates experimental colitis: a potential target for the treatment of Crohn's disease?. Mucosal Immunology, 2012, 5, 129-139.	6.0	26
28	câ€Rel promotes type 1 and type 17 immune responses during <i>Leishmania major</i> infection. European Journal of Immunology, 2011, 41, 1388-1398.	2.9	24
29	The role of NF-κB activation during protection against Leishmania infection. International Journal of Medical Microbiology, 2012, 302, 230-235.	3.6	23
30	Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight, 2020, 5, .	5.0	23
31	Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. Journal of Clinical Investigation, 2019, 129, 1972-1983.	8.2	22
32	Lack of microbiota reduces innate responses and enhances adaptive immunity against <i>Listeria monocytogenes</i> infection. European Journal of Immunology, 2014, 44, 1710-1715.	2.9	20
33	Generation of Foxp3+CD25â^' Regulatory T-Cell Precursors Requires c-Rel and IκBNS. Frontiers in Immunology, 2019, 10, 1583.	4.8	20
34	The Proteasome System in Infection: Impact of β5 and LMP7 on Composition, Maturation and Quantity of Active Proteasome Complexes. PLoS ONE, 2012, 7, e39827.	2.5	19
35	c-REL and lκBNS Govern Common and Independent Steps of Regulatory T Cell Development from Novel CD122-Expressing Pre-Precursors. Journal of Immunology, 2017, 199, 920-930.	0.8	16
36	Pro- and Antitumorigenic Capacity of Immunoproteasomes in Shaping the Tumor Microenvironment. Cancer Immunology Research, 2021, 9, 682-692.	3.4	14

#	Article	IF	CITATIONS
37	Transcription factor c-Rel is indispensable for generation of thymic but not of peripheral Foxp3+ regulatory T cells. Oncotarget, 2017, 8, 52678-52689.	1.8	13
38	Chromatin Binding of c-REL and p65 Is Not Limiting for Macrophage IL12B Transcription During Immediate Suppression by Ovarian Carcinoma Ascites. Frontiers in Immunology, 2018, 9, 1425.	4.8	12
39	Transcription factor c-Rel plays a crucial role in driving anti-CD40-mediated innate colitis. Mucosal Immunology, 2015, 8, 307-315.	6.0	11
40	Microbial metabolites: novel therapeutic tools for boosting cancer therapies. Trends in Cell Biology, 2021, 31, 873-875.	7.9	10
41	Tribolium castaneum defensin 1 kills Moraxella catarrhalis in an in vitro infection model but does not harm commensal bacteria. Virulence, 2021, 12, 1003-1010.	4.4	7
42	Association between activation of atypical NFâ€̂PB1 p105 signaling pathway and nuclear β atenin accumulation in colorectal carcinoma. Molecular Carcinogenesis, 2010, 49, 121-129.	2.7	6
43	NALP expression in Paneth cells provides a novel track in IBD signaling. Langenbeck's Archives of Surgery, 2010, 395, 351-357.	1.9	4
44	Recognition of food antigens by the mucosal and systemic immune system: Consequences for intestinal development and homeostasis. International Journal of Medical Microbiology, 2021, 311, 151493.	3.6	3
45	Mucosal Immunity and Inflammation. Methods in Microbiology, 2010, 37, 353-367.	0.8	2
46	Transcription factor c-Rel mediates communication between commensal bacteria and mucosal lymphocytes. Journal of Leukocyte Biology, 2022, 111, 1001-1007.	3.3	2
47	The Role of Immunoproteasomes in Tumor-Immune Cell Interactions in Melanoma and Colon Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2022, 70, 5.	2.3	2
48	The NFâ€ÎºB transcription factor câ€Rel controls host defense against <i>Citrobacter rodentium</i> . European Journal of Immunology, 2020, 50, 292-294.	2.9	1
49	M1630 Beyond Epithelial to Mesenchymal Transition: A Novel Role for the Transcription Factor Snail in Inflammation and Wound Healing. Gastroenterology, 2009, 136, A-398.	1.3	0
50	Use of Inhibitory Compounds to Dissect the Molecular Pathways Involved in Regulatory B-Cell Differentiation. Methods in Molecular Biology, 2021, 2270, 283-294.	0.9	0
51	Leprosy susceptibility-a matter of protein degradation? The role of proteasomes in infection and disease. International Journal of Leprosy and Other Mycobacterial Diseases, 2005, 73, 135-7.	0.3	0
52	Verteporfin protects against Th17 cellâ€mediated EAE independently of YAP inhibition. European Journal of Immunology, 2022, 52, 1523-1526.	2.9	0