Gwangtaek Lee

List of Publications by Citations

Source: https://exaly.com/author-pdf/4888881/gwangtaek-lee-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

89 2,108 27 41 h-index g-index citations papers 2,485 92 7.9 5.34 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
89	Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. <i>Bioresource Technology</i> , 2016 , 199, 300-310	11	210
88	Global risk of pharmaceutical contamination from highly populated developing countries. <i>Chemosphere</i> , 2015 , 138, 1045-55	8.4	162
87	Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. <i>Journal of Bacteriology</i> , 2011 , 193, 1183-90	3.5	113
86	Efficient microalgae harvesting by organo-building blocks of nanoclays. <i>Green Chemistry</i> , 2013 , 15, 749	10	72
85	Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. <i>Bioresource Technology</i> , 2015 , 186, 246-251	11	71
84	Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. <i>Water Research</i> , 2015 , 73, 181-92	12.5	54
83	Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. <i>Bioresource Technology</i> , 2015 , 192, 335-9	11	50
82	Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. <i>Bioresource Technology</i> , 2016 , 214, 609-614	11	46
81	Oil extraction by aminoparticle-based H2O2 activation via wet microalgae harvesting. <i>RSC Advances</i> , 2013 , 3, 12802	3.7	44
80	Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency. <i>Bioresource Technology</i> , 2017 , 237, 72-77	11	38
79	Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. <i>Bioresource Technology</i> , 2014 , 162, 70-9	11	37
78	Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw. <i>Bioresource Technology</i> , 2014 , 166, 353-7	11	34
77	Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. <i>Bioresource Technology</i> , 2015 , 198, 828-35	11	34
76	Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. <i>Bioresource Technology</i> , 2017 , 239, 190-196	11	33
75	Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. <i>Journal of Applied Phycology</i> , 2017 , 29, 1171-1178	3.2	33
74	An integrated process for microalgae harvesting and cell disruption by the use of ferric ions. <i>Bioresource Technology</i> , 2015 , 191, 469-74	11	31
73	Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. <i>Bioresource Technology</i> , 2017 , 235, 301-308	11	30

(2017-2014)

72	Enhanced glucose yield and structural characterization of corn stover by sodium carbonate pretreatment. <i>Bioresource Technology</i> , 2014 , 152, 316-20	11	30	
71	A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors. <i>Ultrasonics Sonochemistry</i> , 2018 , 43, 219-226	8.9	29	
70	Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2232-2242	4.9	29	
69	Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation. <i>Bioresource Technology</i> , 2014 , 173, 193-197	11	29	
68	Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. <i>Bioresource Technology</i> , 2017 , 225, 58-66	11	29	
67	Enhancing the light utilization efficiency of microalgae using organic dyes. <i>Bioresource Technology</i> , 2015 , 181, 355-9	11	28	
66	Ferric chloride based downstream process for microalgae based biodiesel production. <i>Bioresource Technology</i> , 2015 , 181, 143-7	11	28	
65	Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. <i>Korean Journal of Chemical Engineering</i> , 2016 , 33, 1777-1780	2.8	28	
64	Adsorption of Brilliant Green Dye on Biochar Prepared From Lignocellulosic Bioethanol Plant Waste. <i>Clean - Soil, Air, Water</i> , 2016 , 44, 55-62	1.6	28	
63	Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production. <i>Bioresource Technology</i> , 2015 , 196, 235-40	11	27	
62	Nitrate reduction on the surface of bimetallic catalysts supported by nano-crystalline beta-zeolite (NBeta). <i>Green Chemistry</i> , 2017 , 19, 853-866	10	26	
61	Hydrothermal nitric acid treatment for effectual lipid extraction from wet microalgae biomass. <i>Bioresource Technology</i> , 2014 , 172, 138-142	11	26	
60	Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke. <i>Bioresource Technology</i> , 2014 , 155, 77-83	11	26	
59	Inertial Microfluidics-Based Cell Sorting. <i>Biochip Journal</i> , 2018 , 12, 257-267	4	26	
58	Efficient lactulose production from cheese whey using sodium carbonate. <i>Food Chemistry</i> , 2015 , 173, 1167-71	8.5	25	
57	Producing desulfurized biogas through removal of sulfate in the first-stage of a two-stage anaerobic digestion. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 970-979	4.9	24	
56	Biodiesel production from oleaginous yeast, Cryptococcus sp. by using banana peel as carbon source. <i>Energy Reports</i> , 2019 , 5, 1077-1081	4.6	22	
55	Development of Algal Bloom Removal System Using Unmanned Aerial Vehicle and Surface Vehicle. <i>IEEE Access</i> , 2017 , 5, 22166-22176	3.5	21	

54	Carbon balance of major volatile fatty acids (VFAs) in recycling algal residue via a VFA-platform for reproduction of algal biomass. <i>Journal of Environmental Management</i> , 2019 , 237, 228-234	7.9	20
53	Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel. <i>Bioresource Technology</i> , 2014 , 158, 166-73	11	20
52	A direct ammonium carbonate fuel cell with an anion exchange membrane. RSC Advances, 2014, 4, 5638	3.7	20
51	Harvesting of microalgae cell using oxidized dye wastewater. <i>Bioresource Technology</i> , 2015 , 192, 802-6	11	20
50	Lipid extraction from microalgae cell using persulfate-based oxidation. <i>Bioresource Technology</i> , 2016 , 200, 1073-5	11	18
49	The use of bicarbonate for microalgae cultivation and its carbon footprint analysis. <i>Green Chemistry</i> , 2019 , 21, 5053-5062	10	18
48	Direct conversion from Jerusalem artichoke to hydroxymethylfurfural (HMF) using the Fenton reaction. <i>Food Chemistry</i> , 2014 , 151, 207-11	8.5	18
47	Microalgae dewatering based on forward osmosis employing proton exchange membrane. <i>Bioresource Technology</i> , 2017 , 244, 57-62	11	18
46	Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production. <i>Bioresource Technology</i> , 2017 , 224, 738-742	11	18
45	Persulfate based pretreatment to enhance the enzymatic digestibility of rice straw. <i>Bioresource Technology</i> , 2016 , 222, 523-526	11	18
44	Dramatic improvement of membrane performance for microalgae harvesting with a simple bubble-generator plate. <i>Bioresource Technology</i> , 2015 , 186, 343-347	11	17
43	Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina. <i>Bioresource Technology</i> , 2015 , 191, 1-6	11	17
42	Gold recovery using porphyrin-based polymer from electronic wastes: Gold desorption and adsorbent regeneration. <i>Science of the Total Environment</i> , 2020 , 704, 135405	10.2	17
41	Immobilization of Carbonic Anhydrase on Modified Electrospun Poly(Lactic Acid) Membranes: Quest for Optimum Biocatalytic Performance. <i>Catalysis Letters</i> , 2015 , 145, 519-526	2.8	16
40	Lactulose production from cheese whey using recyclable catalyst ammonium carbonate. <i>Food Chemistry</i> , 2016 , 197, 664-9	8.5	16
39	Multi-bandgap Solar Energy Conversion via Combination of Microalgal Photosynthesis and Spectrally Selective Photovoltaic Cell. <i>Scientific Reports</i> , 2019 , 9, 18999	4.9	15
38	Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. <i>Bioprocess and Biosystems Engineering</i> , 2018 , 41, 671-678	3.7	14
37	Gaseous carbon dioxide conversion and calcium carbonate preparation by magnesium phyllosilicate. <i>RSC Advances</i> , 2014 , 4, 4037-4040	3.7	14

(2015-2017)

36	Harvesting of Scenedesmus obliquus cultivated in seawater using electro-flotation. <i>Korean Journal of Chemical Engineering</i> , 2017 , 34, 62-65	2.8	13
35	Ultrasound-assisted in-situ transesterification of wet Aurantiochytrium sp. KRS 101 using potassium carbonate. <i>Bioresource Technology</i> , 2018 , 261, 117-121	11	12
34	Wavelength shift strategy to enhance lipid productivity of. Biotechnology for Biofuels, 2018, 11, 70	7.8	12
33	Genome of the Root-Associated Plant Growth-Promoting Bacterium Variovorax paradoxus Strain EPS. <i>Genome Announcements</i> , 2013 , 1,		11
32	Biomimetically Synthesized Hierarchical TiO2-Graphitic Carbon as Anodic Catalysts for Direct Alkaline Sulfide Fuel Cell. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1764-1770	8.3	10
31	A Low-Foaming and Biodegradable Surfactant as a Soil-Flushing Agent for Diesel-Contaminated Soil. <i>Separation Science and Technology</i> , 2013 , 48, 1872-1880	2.5	10
30	Harvesting of Scenedesmus obliquus using dynamic filtration with a perforated disk. <i>Journal of Membrane Science</i> , 2016 , 517, 14-20	9.6	10
29	Energy-Efficient Reactive Dividing Wall Column for Simultaneous Esterification of n-Amyl Alcohol and n-Hexanol. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 8206-8219	3.9	9
28	Strengthening calcium alginate microspheres using polysulfone and its performance evaluation: Preparation, characterization and application for enhanced biodegradation of chlorpyrifos. <i>Science of the Total Environment</i> , 2018 , 631-632, 1046-1058	10.2	9
27	Enhanced growth rate and lipid production of freshwater microalgae by adopting two-stage cultivation system under diverse light and nutrients conditions. <i>Water and Environment Journal</i> , 2015 , 29, 533-540	1.7	8
26	Electrochemical ammonia accumulation and recovery from ammonia-rich livestock wastewater. <i>Chemosphere</i> , 2021 , 270, 128631	8.4	8
25	Co-production of biodiesel and alginate from Laminaria japonica. <i>Science of the Total Environment</i> , 2019 , 673, 750-755	10.2	7
24	Dynamical Modeling of Water Flux in Forward Osmosis with Multistage Operation and Sensitivity Analysis of Model Parameters. <i>Water (Switzerland)</i> , 2020 , 12, 31	3	7
23	Study of Optical Configurations for Multiple Enhancement of Microalgal Biomass Production. <i>Scientific Reports</i> , 2019 , 9, 1723	4.9	7
22	Utilization of Starch-Enriched Brewery (Rice Wine) Waste for Mixotrophic Cultivation of Ettlia Sp. YC001 Used in Biodiesel Production. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 183, 1478-1487	3.2	6
21	Sulfate reducing bacteria-based wastewater treatment system integrated with sulfide fuel cell for simultaneous wastewater treatment and electricity generation. <i>Chemosphere</i> , 2019 , 233, 570-578	8.4	6
20	Performance of sulfite/FeIIIEDTA fuel cell: Power from waste in flue gas desulfurization process. <i>Chemical Engineering Journal</i> , 2019 , 375, 122008	14.7	6
19	Lipid extraction from microalgae cell using UV-Fenton-like reaction. <i>Bioresource Technology</i> , 2015 , 192, 792-4	11	6

18	Alkaline in situ transesterification of Aurantiochytrium sp. KRS 101 using potassium carbonate. <i>Bioresource Technology</i> , 2016 , 205, 250-3	11	6
17	An innovative dual fuel cell to capture and collect pure NO X from flue gases. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 1011-1016	2.6	6
16	Electro-synthesis of Ammonia from Dilute Nitric Oxide on a Gas Diffusion Electrode. <i>ACS Energy Letters</i> ,958-965	20.1	6
15	Lipid extraction and esterification for microalgae-based biodiesel production using pyrite (FeS2). <i>Bioresource Technology</i> , 2015 , 191, 420-5	11	5
14	Draft Genome Sequence of a Multistress-Tolerant Yeast, NG7. <i>Genome Announcements</i> , 2018 , 6,		5
13	Enhancement of Lipid Productivity of Chlorella sp. Using Light-Converting Red Fluorescent Films Based on Aggregation-Induced Emission. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15888-158	897	5
12	Application of Fe(NO)-based as nitrogen source and coagulant for cultivation and harvesting of Chlorella sorokiniana. <i>Bioresource Technology</i> , 2016 , 222, 374-379	11	5
11	Thiourea-Based Extraction and Deposition of Gold for Electroless Nickel Immersion Gold Process. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8086-8092	3.9	4
10	Lipid induction of Chlamydomonas reinhardtii CC-124 using bicarbonate ion. <i>Journal of Applied Phycology</i> , 2018 , 30, 271-275	3.2	4
9	Carbon-supported bimetallic PdIr catalysts for alkaline sulfide oxidation in direct alkaline sulfide fuel cell. <i>Journal of Applied Electrochemistry</i> , 2015 , 45, 533-539	2.6	4
8	Inertial Microfluidics-Based Separation of Microalgae Using a Contraction-Expansion Array Microchannel. <i>Micromachines</i> , 2021 , 12,	3.3	4
7	Dynamic filtration with a perforated disk for dewatering of Tetraselmis suecica. <i>Environmental Technology (United Kingdom)</i> , 2017 , 38, 3102-3108	2.6	3
6	Gas-diffusion-electrode based direct electro-stripping system for gaseous ammonia recovery from livestock wastewater. <i>Water Research</i> , 2021 , 196, 117012	12.5	3
5	Nickel (Ni2+) Removal from Water Using Gellan GumBand Mixture as a Filter Material. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7884	2.6	3
4	Resistive Oxidation Kinetics of Iron(II) Thiochelate used as a Nitric Oxide Absorbent in Flue Gas. <i>Energy & Energy & En</i>	4.1	1
3	Electrochemical synthesis of ammonia from water and nitrogen: A Fe-mediated approach. <i>Korean Journal of Chemical Engineering</i> , 2021 , 38, 1272-1276	2.8	O
2	Electrochemical pH control and carbon supply for microalgae cultivation. <i>Chemical Engineering Journal</i> , 2021 , 426, 131796	14.7	0
1	Enhancement of Electrochemical Oxidation of Ammonia and Ammonium Carbonate over Pt Black Catalysts through Interaction with Manganese Dioxide Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14673-14678	3.9	