
Yanzhu Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4888650/publications.pdf Version: 2024-02-01

Υληζημι Ομο

#	Article	IF	CITATIONS
1	Self-Assembly and Paclitaxel Loading Capacity of Cellulose- <i>graft</i> -poly(lactide) Nanomicelles. Journal of Agricultural and Food Chemistry, 2012, 60, 3900-3908.	2.4	88
2	Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chemical Communications, 2012, 48, 5569.	2.2	88
3	Preparation of cellulose-graft-poly(É›-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydrate Polymers, 2013, 92, 77-83.	5.1	88
4	Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renewable Energy, 2020, 147, 1331-1339.	4.3	86
5	Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging. Chemical Engineering Journal, 2020, 384, 123260.	6.6	82
6	Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents. RSC Advances, 2017, 7, 8314-8322.	1.7	67
7	Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation. Science of the Total Environment, 2021, 761, 143217.	3.9	66
8	Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Industrial Crops and Products, 2015, 76, 522-529.	2.5	65
9	Self-assembly and $\hat{1}^2$ -carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles. Carbohydrate Polymers, 2016, 145, 56-63.	5.1	60
10	Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. Journal of Materials Chemistry B, 2020, 8, 10788-10796.	2.9	55
11	Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polymer Bulletin, 2012, 69, 389-403.	1.7	48
12	Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose, 2013, 20, 873-884.	2.4	47
13	Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink. International Journal of Biological Macromolecules, 2020, 164, 4289-4298.	3.6	45
14	Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with bright green fluorescence and sensitive pH response. Industrial Crops and Products, 2021, 167, 113507.	2.5	43
15	Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols. Journal of Analytical and Applied Pyrolysis, 2018, 129, 13-20.	2.6	38
16	Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Advances, 2019, 9, 28902-28907.	1.7	38
17	Stateâ€ofâ€theâ€Art: Applications and Industrialization of Lignin Micro/Nano Particles. ChemSusChem, 2021, 14, 1284-1294.	3.6	35
18	Hydroxypropyl sulfonated kraft lignin as a coagulant for cationic dye. Industrial Crops and Products, 2018, 124, 273-283.	2.5	33

Yanzhu Guo

#	Article	IF	CITATIONS
19	Preparation, characterization and the adsorption characteristics of lignin/silica nanocomposites from cellulosic ethanol residue. RSC Advances, 2017, 7, 41176-41181.	1.7	31
20	Nitrogen-doped lignin-derived biochar with enriched loading of CeO2 nanoparticles for highly efficient and rapid phosphate capture. International Journal of Biological Macromolecules, 2021, 182, 1484-1494.	3.6	28
21	Self-assembly of cationic amphiphilic cellulose-g-poly (p-dioxanone) copolymers. Carbohydrate Polymers, 2019, 204, 214-222.	5.1	26
22	Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/lµ-caprolactone/p-dioxanone). Cellulose, 2015, 22, 2365-2374.	2.4	24
23	Lignin Structure and Solvent Effects on the Selective Removal of Condensed Units and Enrichment of S-Type Lignin. Polymers, 2018, 10, 967.	2.0	24
24	Ligninâ€First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotubeâ€Supported Ruthenium: Impact of Lignin Sources. ChemSusChem, 2022, 15, .	3.6	23
25	Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers. International Journal of Biological Macromolecules, 2021, 184, 181-187.	3.6	20
26	Generation and Use of Lignin- <i>g</i> -AMPS in Extended DLVO Theory for Evaluating the Flocculation of Colloidal Particles. ACS Omega, 2020, 5, 21032-21041.	1.6	19
27	Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging. Cellulose, 2017, 24, 889-902.	2.4	18
28	Biodegradation of Lignin into Low-Molecular-Weight Oligomers by Multicopper Laccase-Mimicking Nanozymes of the Cu/GMP Complex at Room Temperature. ACS Sustainable Chemistry and Engineering, 2022, 10, 5489-5499.	3.2	16
29	Study on the mechanism of inhibiting the calcification of anaerobic granular sludge induced by the addition of trace signal molecule (30-C6-HSL). Bioresource Technology, 2022, 344, 126232.	4.8	15
30	Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid and Polymer Science, 2016, 294, 135-143.	1.0	14
31	One-pot preparation of zwitterion-type lignin polymers. International Journal of Biological Macromolecules, 2019, 140, 429-440.	3.6	14
32	Green solvents-based molecular weight controllable fractionation process for industrial alkali lignin at room temperature. International Journal of Biological Macromolecules, 2022, 207, 531-540.	3.6	13
33	Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications. International Journal of Biological Macromolecules, 2022, 208, 782-793.	3.6	13
34	Green Preparation of Thermochromic Starch-Based Fibers through a Wet-Spinning Process. ACS Applied Polymer Materials, 2021, 3, 436-444.	2.0	10
35	Correlation between physicochemical characteristics of lignin deposited on autohydrolyzed wood chips and their cellulase enzymatic hydrolysis. Bioresource Technology, 2022, 350, 126941.	4.8	7
36	Preparation of Long-Chain Fatty Acyl-Grafted Chitosan in an Ionic Liquid and Their Self-Assembled Micelles in Water. Journal of Macromolecular Science - Physics, 2012, 51, 2483-2492.	0.4	6

Yanzhu Guo

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Cellulose-graft-poly(p-dioxanone) Copolymers via Homogeneous Ring-Opening Graft Polymerization in Ionic Liquids. BioResources, 2015, 11, .	0.5	6
38	Cationic micelles self-assembled from quaternized cellulose-g-oligo (ε-caprolactone) amphiphilic copolymers. European Polymer Journal, 2019, 119, 385-392.	2.6	6
39	Fabrication of porous ultrathin carbon nitride nanosheet catalysts with enhanced photocatalytic activity for N- and O-heterocyclic compound synthesis. New Journal of Chemistry, 2021, 45, 365-372.	1.4	6
40	Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge. ChemCatChem, 2022, 14, .	1.8	6
41	Chemoselective Hydrogenation of Functionalized Nitroarenes into Anilines by Supported Molybdenum Catalysts. ChemistrySelect, 2020, 5, 7249-7253.	0.7	4
42	Facile synthesis of cobalt Disulfide/Carbon nanotube composite as High-performance supercapacitors electrode. Journal of Electroanalytical Chemistry, 2021, 897, 115570.	1.9	4
43	Advances in the application of molecular sieves as catalysts for lignin depolymerization $\hat{a} \in \mathbf{S} = (1 + 1) + ($	1.3	4
44	In-situ compatibilized starch/polyacylonitrile composite fiber fabricated via dry-wet spinning technique. International Journal of Biological Macromolecules, 2022, 212, 412-419.	3.6	4
45	Preparation of fluorescent core/shell nanoparticles from amphiphilic cellulose-based copolymers for tumor cell imaging. Journal of Controlled Release, 2015, 213, e132.	4.8	3
46	Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition. New Journal of Chemistry, 2022, 46, 8892-8900.	1.4	3
47	Ni ₁₂ P ₅ /P–N–C Derived from Natural Single-Celled Chlorella for Catalytic Depolymerization of Lignin into Monophenols. ACS Omega, 2022, 7, 13134-13143.	1.6	3
48	Fluorescent N-functionalized carbon nanodots from carboxymethylcellulose for sensing of high-valence metal ions and cell imaging. RSC Advances, 2021, 11, 34898-34907.	1.7	1