List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4888178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clobal guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infectious Diseases, The, 2019, 19, e405-e421.	4.6	970
2	Fusarium: Molecular Diversity and Intrinsic Drug Resistance. PLoS Pathogens, 2016, 12, e1005464.	2.1	314
3	Clobal guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infectious Diseases, The. 2021, 21, e246-e257.	4.6	167
4	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	1.1	107
5	Global molecular epidemiology and genetic diversity of <i>Fusarium</i> , a significant emerging group of human opportunists from 1958 to 2015. Emerging Microbes and Infections, 2016, 5, 1-11.	3.0	89
6	The world's ten most feared fungi. Fungal Diversity, 2018, 93, 161-194.	4.7	85
7	Current antifungal treatment of fusariosis. International Journal of Antimicrobial Agents, 2018, 51, 326-332.	1.1	83
8	Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. Journal of Antimicrobial Chemotherapy, 2015, 70, 1068-71.	1.3	81
9	<i>Candida auris</i> otomycosis in Iran and review of recent literature. Mycoses, 2019, 62, 101-105.	1.8	75
10	Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Diversity, 2018, 93, 195-213.	4.7	73
11	The first cases of <i>Candida auris</i> candidaemia in Oman. Mycoses, 2017, 60, 569-575.	1.8	66
12	Origin and distribution of Sporothrix globosa causing sapronoses in Asia. Journal of Medical Microbiology, 2017, 66, 560-569.	0.7	62
13	No to <i>Neocosmospora</i> : Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus <i>Fusarium</i> . MSphere, 2020, 5, .	1.3	61
14	COVID-19 associated invasive candidiasis. Journal of Infection, 2021, 82, e45-e46.	1.7	57
15	<i>In vitro</i> combinations of natamycin with voriconazole, itraconazole and micafungin against clinical <i>Fusarium</i> strains causing keratitis: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 953-955.	1.3	53
16	The â€~forma specialis' issue in Fusarium: A case study in Fusarium solani f. sp. pisi. Scientific Reports, 2018, 8, 1252.	1.6	51
17	Antifungal Susceptibility Testing of Fusarium: A Practical Approach. Journal of Fungi (Basel,) Tj ETQq1 1 0.784314	FrgBT ∕Ov ₽.5	erlock 10 Tf 49
18	Molecular Characterization and Antifungal Susceptibility of Clinical Fusarium Species From Brazil.	1.5	49

Molecular Characterization and Antifunga Frontiers in Microbiology, 2019, 10, 737.

1.5 49

#	Article	IF	CITATIONS
19	Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. Fungal Biology, 2016, 120, 231-245.	1.1	48
20	In vitro resistance of clinical Fusarium species to amphotericin B and voriconazole using the EUCAST antifungal susceptibility method. Diagnostic Microbiology and Infectious Disease, 2016, 85, 438-443.	0.8	45
21	A re-evaluation of the Chaetothyriales using criteria of comparative biology. Fungal Diversity, 2020, 103, 47-85.	4.7	43
22	DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex. Fungal Biology, 2016, 120, 265-278.	1.1	40
23	Two new species of the Fusarium fujikuroi species complex isolated from the natural environment. Antonie Van Leeuwenhoek, 2017, 110, 819-832.	0.7	37
24	Keratitis by Fusarium temperatum, a novel opportunist. BMC Infectious Diseases, 2014, 14, 588.	1.3	36
25	Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Genus <i>Fusarium</i> Causing Human Keratomycosis in South India. Medical Mycology, 2016, 54, 287-294.	0.3	36
26	Phylogenetic diversity of human pathogenic Fusarium and emergence of uncommon virulent species. Journal of Infection, 2015, 71, 658-666.	1.7	35
27	Species Distinction in the Trichophyton rubrum Complex. Journal of Clinical Microbiology, 2019, 57, .	1.8	35
28	Ongoing Challenges with Healthcare-Associated Candida auris Outbreaks in Oman. Journal of Fungi (Basel, Switzerland), 2019, 5, 101.	1.5	34
29	Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy. Saudi Journal of Biological Sciences, 2016, 23, 397-403.	1.8	33
30	Rapid identification of clinical members of <i>Fusarium fujikuroi</i> complex using MALDI-TOF MS. Future Microbiology, 2015, 10, 1939-1952.	1.0	29
31	Multidrugâ€resistant <i>Fusarium</i> in keratitis: a clinicoâ€mycological study of keratitis infections in Chennai, India. Mycoses, 2017, 60, 230-233.	1.8	29
32	Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 909.	1.5	29
33	Potent Activities of Luliconazole, Lanoconazole, and Eight Comparators against Molecularly Characterized Fusarium Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	27
34	<i>Fusarium</i> species causing eumycetoma: Report of two cases and comprehensive review of the literature. Mycoses, 2017, 60, 204-212.	1.8	26
35	Molecular Diagnostics of Arthroconidial Yeasts, Frequent Pulmonary Opportunists. Journal of Clinical Microbiology, 2018, 56, .	1.8	25
36	Global Molecular Diversity of the Halotolerant Fungus Hortaea werneckii. Life, 2018, 8, 31.	1.1	25

#	Article	IF	CITATIONS
37	Epidemiology of <i>Aspergillus</i> species causing keratitis in Mexico. Mycoses, 2019, 62, 144-151.	1.8	25
38	<i>In Vitro</i> Activity of Chlorhexidine Compared with Seven Antifungal Agents against 98 <i>Fusarium</i> Isolates Recovered from Fungal Keratitis Patients. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	24
39	<p>Multiresistant Fusarium Pathogens on Plants and Humans: Solutions in (from) the Antifungal Pipeline?</p> . Infection and Drug Resistance, 2019, Volume 12, 3727-3737.	1.1	24
40	A Cluster of Candida auris Blood Stream Infections in a Tertiary Care Hospital in Oman from 2016 to 2019. Antibiotics, 2020, 9, 638.	1.5	24
41	Antifungal Susceptibility of Emerging Dimorphic Pathogens in the Family Ajellomycetaceae. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	22
42	Comparative Evaluation of Etest, EUCAST, and CLSI Methods for Amphotericin B, Voriconazole, and Posaconazole against Clinically Relevant Fusarium Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	21
43	Cryptococcosis and tuberculosis co-infection in mainland China. Emerging Microbes and Infections, 2016, 5, 1-3.	3.0	18
44	Comparative pathogenicity of opportunistic black yeasts in <i>Aureobasidium</i> . Mycoses, 2019, 62, 803-811.	1.8	16
45	Bioactive Levan-Type Exopolysaccharide Produced by <i>Pantoea agglomerans</i> ZMR7: Characterization and Optimization for Enhanced Production. Journal of Microbiology and Biotechnology, 2021, 31, 696-704.	0.9	16
46	Phylogenetic and ecological reevaluation of the order Onygenales. Fungal Diversity, 2022, 115, 1-72.	4.7	16
47	The Concept of Ecthyma Gangrenosum Illustrated by a Fusarium oxysporum Infection in an Immunocompetent Individual. Mycopathologia, 2016, 181, 759-763.	1.3	15
48	Fusarium metavorans sp. nov.: The frequent opportunist â€~FSSC6'. Medical Mycology, 2018, 56, S144-S152.	. 0.3	15
49	Green Synthesis, Antimicrobial Activity and Cytotoxicity of Novel Fused Pyrimidine Derivatives Possessing a Trifluoromethyl Moiety. ChemistrySelect, 2018, 3, 8306-8311.	0.7	13
50	Clinical Origin and Species Distribution of Fusarium spp. Isolates Identified by Molecular Sequencing and Mass Spectrometry: A European Multicenter Hospital Prospective Study. Journal of Fungi (Basel,) Tj ETQq0 0 (0 1g 8T /C)ve i bock 10 Tf
51	Imported Talaromycosis in Oman in Advanced HIV: A Diagnostic Challenge Outside the Endemic Areas. Mycopathologia, 2017, 182, 739-745.	1.3	11
52	A Comparison of Isolation Methods for Black Fungi Degrading Aromatic Toxins. Mycopathologia, 2019, 184, 653-660.	1.3	11
53	Sequence data from isolated lichen-associated melanized fungi enhance delimitation of two new lineages within Chaetothyriomycetidae. Mycological Progress, 2021, 20, 911-927.	0.5	11
54	Onychomycosis Caused by Fusarium Species. Journal of Fungi (Basel, Switzerland), 2022, 8, 360.	1.5	11

#	Article	IF	CITATIONS
55	Gliotoxin, identified from a screen of fungal metabolites, disrupts 7SK snRNP, releases P-TEFb, and reverses HIV-1 latency. Science Advances, 2020, 6, eaba6617.	4.7	10
56	Do antibacterial and antifungal combinations have better activity against clinically relevant fusarium species? in vitro synergism. International Journal of Antimicrobial Agents, 2018, 51, 784-788.	1.1	9
57	Mycotic Keratitis Caused by Fusarium solani sensu stricto (FSSC5): A Case Series. Mycopathologia, 2018, 183, 835-840.	1.3	9
58	Virulence and antifungal susceptibility of microsatellite genotypes of <scp><i>Candida albicans</i></scp> from superficial and deep locations. Yeast, 2019, 36, 363-373.	0.8	9
59	Novel black yeast-like species in chaetothyriales with ant-associated life styles. Fungal Biology, 2021, 125, 276-284.	1.1	9
60	Antifungal Susceptibility of 182 Fusarium Species Isolates from 20 European Centers: Comparison between EUCAST and Gradient Concentration Strip Methods. Antimicrobial Agents and Chemotherapy, 2021, 65, e0149521.	1.4	9
61	Nomenclatural notes on <i>Nadsoniella</i> and the human opportunist black yeast genus <i>Exophiala</i> . Mycoses, 2017, 60, 358-365.	1.8	8
62	Aspergillus Species in Lower Respiratory Tract of Hospitalized Patients from Shanghai, China: Species Diversity and Emerging Azole Resistance. Infection and Drug Resistance, 2020, Volume 13, 4663-4672.	1.1	8
63	Bipolaris oryzae, a novel fungal opportunist causing keratitis. Diagnostic Microbiology and Infectious Disease, 2016, 85, 61-65.	0.8	7
64	In vitro activity of nine antifungal agents against a global collection of Hortaea werneckii isolates, the agent of tinea nigra. International Journal of Antimicrobial Agents, 2019, 54, 95-98.	1.1	7
65	Molecular and MALDIâ€ToF MS differentiation and antifungal susceptibility of prevalent clinical Fusarium species in China. Mycoses, 2021, 64, 1261-1271.	1.8	7
66	Basidiobolus omanensis sp. nov. Causing Angioinvasive Abdominal Basidiobolomycosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 653.	1.5	7
67	Activity of cinnamaldehyde, carvacrol and thymol combined with antifungal agents against <i>Fusarium</i> spp. Journal of Essential Oil Research, 2021, 33, 502-508.	1.3	6
68	Estimated Burden of Fungal Infections in Oman. Journal of Fungi (Basel, Switzerland), 2021, 7, 5.	1.5	6
69	Species borderlines in Fusarium exemplified by F. circinatum/F. subglutinans. Fungal Genetics and Biology, 2019, 132, 103262.	0.9	5
70	Phylogenetic Analysis of Clinically Relevant Fusarium Species in Iran. Mycopathologia, 2020, 185, 515-525.	1.3	5
71	Disseminated Rhinocladiella mackenziei infection in a kidney transplant recipient: A case report and literature review. Journal De Mycologie Medicale, 2021, 31, 101196.	0.7	5
72	In Vitro Antifungal Susceptibility Profile of Miltefosine against a Collection of Azole and Echinocandins Resistant Fusarium Strains. Journal of Fungi (Basel, Switzerland), 2022, 8, 709.	1.5	4

#	Article	IF	CITATIONS
73	In vitro evaluation of antifungal combination against Cryptococcus neoformans. Diagnostic Microbiology and Infectious Disease, 2019, 94, 155-156.	0.8	3
74	Fusariosis: an update on therapeutic options for management. Expert Opinion on Orphan Drugs, 2021, 9, 95-103.	0.5	3
75	New record of Aureobasidium mangrovei from plant debris in the Sultanate of Oman Czech Mycology, 2019, 71, 219-229.	0.2	3
76	First Case of Subcutaneous Mycoses Caused by Dirkmeia churashimaensis and a Literature Review of Human Ustilaginales Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711768.	1.8	3
77	Metagenomic analysis of fungal taxa inhabiting Mecca region, Saudi Arabia. Genomics Data, 2016, 9, 126-127.	1.3	2
78	The genus <i>Anthopsis</i> and its phylogenetic position in <i>Chaetothyriales</i> . Mycoses, 2017, 60, 254-259.	1.8	2
79	Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Archives of Microbiology, 2021, 203, 1211-1219.	1.0	2
80	New molecular marker for phylogenetic reconstruction of black yeast-like fungi (Chaetothyriales) with hypothetical EIF2AK2 kinase gene. Fungal Biology, 2020, 124, 1032-1038.	1.1	1
81	Recent developments in less known and multi-resistant fungal opportunists. Critical Reviews in Microbiology, 2021, 47, 762-780.	2.7	1