Mohamedally Kurmoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application. Nano Research, 2022, 15, 346.	5.8	12
2	Engineering Heteronuclear Arrays from <scp>Ir^{III}â€Metalloligand</scp> and <scp>Co^{II}</scp> Showing Coexistence of Slow Magnetization Relaxation and Photoluminescence. Chinese Journal of Chemistry, 2022, 40, 931-938.	2.6	4
3	Rareâ€Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redoxâ€Switchable Singleâ€Molecule Magnets. Chemistry - A European Journal, 2021, 27, 622-627.	1.7	21
4	A Domino Fusion of an Organic Ligand Depended on Metalâ€Induced and Oxygen Insertion, Unraveled by Crystallography, Mass Spectrometry, and DFT Calculations. Chemistry - A European Journal, 2021, 27, 2875-2881.	1.7	5
5	Silica–Organometallic One-Dimensional Hybrid Employing a Agâ''Ï€ _{Câ•C} Bond Connecting Alternating Ag ₄ (NO ₃) ₄ and OctavinyIsilsesquioxane. Inorganic Chemistry, 2021, 60, 2899-2904.	1.9	6
6	Precise Implantation of an Archimedean Ag@Cu ₁₂ Cuboctahedron into a Platonic Cu ₄ Bis(diphenylphosphino)hexane ₆ Tetrahedron. ACS Nano, 2021, 15, 8733-8741.	7.3	33
7	Retention of a Four-Fold Interpenetrating Cadmium–Organic Framework through a Three-Step Single Crystal Transformation. Inorganic Chemistry, 2021, 60, 8331-8338.	1.9	4
8	Iron(II) Spin Crossover Coordination Polymers Derived From a Redox Active Equatorial Tetrathiafulvalene Schiff-Base Ligand. Frontiers in Chemistry, 2021, 9, 692939.	1.8	5
9	Discrete Heteropolynuclear Yb/Er Assemblies: Switching on Molecular Upconversion Under Mild Conditions. Angewandte Chemie - International Edition, 2021, 60, 22368-22375.	7.2	23
10	Discrete Heteropolynuclear Yb/Er Assemblies: Switching on Molecular Upconversion Under Mild Conditions. Angewandte Chemie, 2021, 133, 22542-22549.	1.6	5
11	In Situ Metalâ€Assisted Ligand Modification Induces Mn 4 Clusterâ€toâ€Cluster Transformation: A Crystallography, Mass Spectrometry, and DFT Study. Chemistry - A European Journal, 2020, 26, 721-728.	1.7	9
12	Luminescent lr(<scp>iii</scp>)–Ln(<scp>iii</scp>) coordination polymers showing slow magnetization relaxation. Inorganic Chemistry Frontiers, 2020, 7, 4580-4592.	3.0	23
13	Tuning Electrical―and Photoâ€Conductivity by Cation Exchange within a Redoxâ€Active Tetrathiafulvaleneâ€Based Metal–Organic Framework. Angewandte Chemie, 2020, 132, 18922-18926.	1.6	24
14	Tuning Electrical―and Photoâ€Conductivity by Cation Exchange within a Redoxâ€Active Tetrathiafulvaleneâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 18763-18767.	7.2	29
15	A Metal–Organic Framework Based on a Nickel Bis(dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor. Journal of the American Chemical Society, 2020, 142, 20313-20317.	6.6	83
16	Frontispiece: In Situ Pyrolysis Tracking and Real‶ime Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
17	Frontispiz: In Situ Pyrolysis Tracking and Realâ€Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie, 2020, 132, .	1.6	0
18	Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nature Communications, 2020, 11, 5534.	5.8	149

Mohamedally Kurmoo

#	Article	IF	CITATIONS
19	Copper(II)-Assisted Ligand Fragmentation Leading to Three Families of Metallamacrocycle. Inorganic Chemistry, 2020, 59, 13524-13532.	1.9	14
20	The dominance of sulfate over two organic ligands in the solvothermal assembly of an undecanuclear cobaltous cluster: crystallography and mass spectrometry. Dalton Transactions, 2020, 49, 17683-17688.	1.6	1
21	Remote and Selective C(sp ²)–H Olefination for Sequential Regioselective Linkage of Phenanthrenes. Organic Letters, 2020, 22, 4129-4134.	2.4	11
22	Enhanced dielectricity coupled to spin-crossover in a one-dimensional polymer iron(ii) incorporating tetrathiafulvalene. Chemical Science, 2020, 11, 6229-6235.	3.7	32
23	Metal–Metalloligand Coordination Polymer Embedding Triangular Cobalt–Oxo Clusters: Solvent- and Temperature-Induced Crystal to Crystal Transformations and Associated Magnetism. Inorganic Chemistry, 2020, 59, 8935-8945.	1.9	19
24	In Situ Pyrolysis Tracking and Realâ€Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie - International Edition, 2020, 59, 13232-13237.	7.2	44
25	In Situ Pyrolysis Tracking and Realâ€Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie, 2020, 132, 13334-13339.	1.6	6
26	Late-Stage Modification of Tertiary Phosphines via Ruthenium(II)-Catalyzed C–H Alkylation. Organic Letters, 2020, 22, 1331-1335.	2.4	28
27	Field-induced slow magnetic relaxation in low-spin <i>S</i> = 1/2 mononuclear osmium(<scp>v</scp>) complexes. Dalton Transactions, 2020, 49, 4084-4092.	1.6	16
28	Monitoring fragmentation and oligomerization of a di-μ-methoxo bridged copper(<scp>ii</scp>) complex: structure, mass spectrometry, magnetism and DFT studies. Dalton Transactions, 2019, 48, 13094-13100.	1.6	4
29	Interplay of anthracene luminescence and dysprosium magnetism by steric control of photodimerization. Dalton Transactions, 2019, 48, 13769-13779.	1.6	24
30	Incorporating Paramagnetic Ir ^{IV} Cl ₆ ^{2–} in H-Bonded Networks of Metal-Phosphonate Hydrate: Slow Magnetic Relaxation and Proton Conduction. Crystal Growth and Design, 2019, 19, 4836-4843.	1.4	10
31	Hexadecanuclear Mn ^{II} ₂ Mn ^{III} ₁₄ Molecular Torus Built from <i>in Situ</i> Tandem Ligand Transformations. Inorganic Chemistry, 2019, 58, 14331-14337.	1.9	14
32	Chalcogens-Induced Ag ₆ Z ₄ @Ag ₃₆ (Z = S or Se) Core–Shell Nanoclusters: Enlarged Tetrahedral Core and Homochiral Crystallization. Journal of the American Chemical Society, 2019, 141, 17884-17890.	6.6	76
33	Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode. Science Bulletin, 2019, 64, 1667-1674.	4.3	19
34	Metal Site Segregation in Chair-Shaped MII4 Cluster: Crystallography, Mass Spectrometry, and Magnetic and Optical Properties. Crystal Growth and Design, 2019, 19, 7067-7076.	1.4	1
35	Carbon Dioxide (CO ₂) Fixation: Linearly Bridged Zn ₂ Paddlewheel Nodes by CO ₂ in a Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 16040-16046.	1.9	7
36	Two- and Three-Dimensional Heterometallic Ln[Ru2-α-Ammonium Diphosphonate] Nets: Structures, Porosity, Magnetism, and Proton Conductivity. Inorganic Chemistry, 2019, 58, 14034-14045.	1.9	15

3

#	Article	IF	CITATIONS
37	Fragmentation of a One-Dimensional Zinc Coordination Polymer and Partial Reassembly Evidenced by Mass Spectrometry. Crystal Growth and Design, 2019, 19, 6801-6805.	1.4	1
38	Concomitant Use of Tetrathiafulvalene and 7,7,8,8-Tetracyanoquinodimethane within the Skeletons of Metal–Organic Frameworks: Structures, Magnetism, and Electrochemistry. Inorganic Chemistry, 2019, 58, 8657-8664.	1.9	39
39	A Chiral and Polar Single-Molecule Magnet: Synthesis, Structure, and Tracking of Its Formation Using Mass Spectrometry. Inorganic Chemistry, 2019, 58, 7236-7242.	1.9	15
40	Difference in the Formation of Two Structural Types of V-Shaped M ^{II} ₃ Clusters: Diffraction, Mass Spectrometry, and Magnetism. Inorganic Chemistry, 2019, 58, 7472-7479.	1.9	7
41	Tracking the multiple-step formation of an iron(III) complex and its application in photodynamic therapy for breast cancer. Science China Chemistry, 2019, 62, 719-726.	4.2	20
42	A Twoâ€Dimensional Iron(II) Coordination Polymer with Synergetic Spinâ€Crossover and Luminescent Properties. Angewandte Chemie - International Edition, 2019, 58, 8789-8793.	7.2	115
43	Progressive Structure Designing and Property Tuning of Manganese(II) Coordination Polymers with the Tetra(4-pyridyl)-tetrathiafulvalene Ligand. Crystal Growth and Design, 2019, 19, 3012-3018.	1.4	13
44	Redox Activities of Metal–Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers. Inorganic Chemistry, 2019, 58, 3698-3706.	1.9	66
45	Carboxylate-Assisted Pd(II)-Catalyzed <i>ortho</i> -C–H and Remote C–H Activation: Economical Synthesis of Pyrano[4,3- <i>b</i>]Indol-1(5 <i>H</i>)-ones. Organic Letters, 2019, 21, 2847-2850.	2.4	22
46	Ruthenium-Catalyzed Gram-Scale Preferential C–H Arylation of Tertiary Phosphine. Organic Letters, 2019, 21, 2885-2889.	2.4	39
47	Thermally Induced trans â€ŧo―cis Isomerization and Its Photoinduced Reversal Monitored using Absorption and Luminescence: Cooperative Effect of Metal Coordination and Steric Substituent. Chemistry - A European Journal, 2019, 25, 5177-5185.	1.7	8
48	Self-Organization into Preferred Sites by Mg ^{II} , Mn ^{II} , and Mn ^{III} in Brucite-Structured M ₁₉ Cluster. Inorganic Chemistry, 2019, 58, 3800-3806.	1.9	21
49	From a layered iridium(<scp>iii</scp>)–cobalt(<scp>ii</scp>) organophosphonate to an efficient oxygen-evolution-reaction electrocatalyst. Chemical Communications, 2019, 55, 13920-13923.	2.2	15
50	Different Silver Nanoparticles in One Crystal: Ag ₂₁₀ (^{<i>i<i< i=""></i<></i>} PrPhS) ₇₁ (Ph ₃ P) ₅ Cl and Ag ₂₁₁ (^{<i>i<i< i=""></i<></i>} PrPhS) ₇₁ (Ph ₃ P) ₆ Cl. Angewandte Chemie, 2019, 131, 201-205.	1.6	34
51	Different Silver Nanoparticles in One Crystal: Ag ₂₁₀ (^{<i>i<i< i=""></i<></i>} PrPhS) ₇₁ (Ph ₃ P) ₅ Cl and Ag ₂₁₁ (^{<i>i<i< i=""></i<></i>} PrPhS) ₇₁ (Ph ₃ P) ₆ Cl. Angewandte Chemie - International Edition, 2019, 58, 195-199.	7.2	118
52	Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 2019, 378, 500-512.	9.5	428
53	Manipulating Clusters by Use of Competing N,Oâ€Chelating Ligands: A Combined Crystallographic, Mass Spectrometric, and DFT Study. Chemistry - A European Journal, 2018, 24, 7906-7912.	1.7	33
54	Electrical Conductivity of Copper Hexamers Tuned by their Ground-State Valences. Inorganic Chemistry, 2018, 57, 3443-3450.	1.9	10

#	Article	IF	CITATIONS
55	Coupling photo-, mechano- and thermochromism and single-ion-magnetism of two mononuclear dysprosium–anthracene–phosphonate complexes. Chemical Communications, 2018, 54, 3278-3281.	2.2	39
56	Sensitized near infrared emission through supramolecular d → f energy transfer within an ionic Ru(<scp>ii</scp>)–Er(<scp>iii</scp>) pair. Dalton Transactions, 2018, 47, 2073-2078.	1.6	4
57	Regulating structural dimensionality and emission colors by organic conjugation between Sm ^{III} at a fixed distance. Dalton Transactions, 2018, 47, 6908-6916.	1.6	5
58	A Cuprous [4 × 4] Grid: Single-Crystal to Single-Crystal Transformation and Fading of Luminescence by Solvent Inclusion. Inorganic Chemistry, 2018, 57, 15040-15043.	1.9	11
59	Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nature Communications, 2018, 9, 2094.	5.8	129
60	Hierarchical tandem assembly of planar [3×3] building units into {3×[3×3]} oligomers: mixed-valency, electrical conductivity and magnetism. Chemical Science, 2018, 9, 7498-7504.	3.7	23
61	Reversible SCâ€SC Transformation involving [4+4] Cycloaddition of Anthracene: A Singleâ€Ion to Singleâ€Molecule Magnet and Yellowâ€Green to Blueâ€White Emission. Angewandte Chemie - International Edition, 2018, 57, 8577-8581.	7.2	97
62	Anion-templated nanosized silver clusters protected by mixed thiolate and diphosphine. Nanoscale, 2017, 9, 3601-3608.	2.8	71
63	Structure, solution assembly, and electroconductivity of nanosized argento-organic-cluster/framework templated by chromate. Nanoscale, 2017, 9, 5305-5314.	2.8	38
64	Fabrication of a capillary column coated with the four-fold-interpenetrated MOF Cd(D-Cam)(tmdpy) for gas chromatographic separation. Inorganic Chemistry Communication, 2017, 83, 123-126.	1.8	12
65	Chemical reaction within a compact non-porous crystal containing molecular clusters without the loss of crystallinity. Chemical Science, 2017, 8, 5356-5361.	3.7	20
66	A rod-spacer mixed ligands MOF [Mn 3 (HCOO) 2 (D -cam) 2 (DMF) 2] n as coating material for gas chromatography capillary column. Inorganic Chemistry Communication, 2017, 82, 34-38.	1.8	12
67	Solventâ€Controlled Phase Transition of a Co ^{II} â€Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chemistry - A European Journal, 2017, 23, 7990-7996.	1.7	111
68	Hierarchical Assembly and Aggregation-Induced Enhanced Emission of a Pair of Isostructural Zn ₁₄ Clusters. Inorganic Chemistry, 2017, 56, 14069-14076.	1.9	29
69	A Porous Metal–Organic Framework [Zn ₂ (bdc)(<scp>I</scp> -lac)] as a Coating Material for Capillary Columns of Gas Chromatography. Inorganic Chemistry, 2017, 56, 11043-11049.	1.9	25
70	Core–Shell {Mn7âŠ,(Mn,Cd)12} Assembled from Core {Mn7} Disc. Journal of the American Chemical Society, 2017, 139, 14033-14036.	6.6	98
71	A Water-Stable Cl@Ag ₁₄ Cluster Based Metal–Organic Open Framework for Dichromate Trapping and Bacterial Inhibition. Inorganic Chemistry, 2017, 56, 11891-11899.	1.9	60
72	Co-Crystallization of Achiral Components into Chiral Network by Supramolecular Interactions: Coordination Complexes – Organic Radical. Crystal Growth and Design, 2017, 17, 4893-4899.	1.4	13

#	Article	IF	CITATIONS
73	Tracking the Progress and Mechanism Study of a Solvothermal in Situ Domino N-Alkylation Reaction of Triethylamine and Ammonia Assisted by Ferrous Sulfate. Inorganic Chemistry, 2017, 56, 10123-10126.	1.9	17
74	Ligand Effect on the Single-Molecule Magnetism of Tetranuclear Co(II) Cubane. Inorganic Chemistry, 2017, 56, 15178-15186.	1.9	33
75	Ferromagnetic coupling in copper benzimidazole chloride: structural, mass spectrometry, magnetism, and DFT studies. Dalton Transactions, 2017, 46, 16663-16670.	1.6	18
76	Three Properties in One Coordination Complex: Chirality, Spin Crossover, and Dielectric Switching. European Journal of Inorganic Chemistry, 2017, 2017, 3144-3149.	1.0	29
77	General Assembly of Twisted Trigonalâ€Prismatic Nonanuclear Silver(I) Clusters. Chemistry - A European Journal, 2016, 22, 3019-3028.	1.7	47
78	Near-Infrared Emitters: Stepwise Assembly of Two Heteropolynuclear Clusters with Tunable Ag ^I :Zn ^{II} Ratio. Inorganic Chemistry, 2016, 55, 4757-4763.	1.9	35
79	Biomimetic Transformation by a Crystal of a Chiral Mn ^{II} –Cr ^{III} Ferrimagnetic Prussian Blue Analogue. Chemistry of Materials, 2016, 28, 7029-7038.	3.2	25
80	Supramolecular Interactions Direct the Formation of Two Structural Polymorphs from One Building Unit in a Oneâ€Pot Synthesis. Chemistry - A European Journal, 2016, 22, 13900-13907.	1.7	15
81	Assembly of a Highly Stable Luminescent Zn ₅ Cluster and Application to Bioâ€Imaging. Angewandte Chemie - International Edition, 2016, 55, 11407-11411.	7.2	88
82	Stepwise Assembly of M ^{II} ₇ Clusters Revealed by Mass Spectrometry, EXAFS, and Crystallography. Chemistry - A European Journal, 2016, 22, 18404-18411.	1.7	38
83	Hierarchical Assembly of a {Mn ^{II} ₁₅ Mn ^{III} ₄ } Brucite Disc: Step-by-Step Formation and Ferrimagnetism. Journal of the American Chemical Society, 2016, 138, 1328-1334.	6.6	179
84	Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet. Inorganic Chemistry, 2016, 55, 3047-3057.	1.9	8
85	The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 2015, 44, 5258-5275.	1.6	225
86	Nanoporous Cobalt(II) MOF Exhibiting Four Magnetic Ground States and Changes in Gas Sorption upon Post-Synthetic Modification. Journal of the American Chemical Society, 2014, 136, 4680-4688.	6.6	387
87	Design, structure and luminescent properties of a novel two-dimensional Cd(II) coordination polymer constructed from in situ generated 1-methyl-2-(3H-[1–3]triazol-4-yl)-1H-benzoimidazole. Inorganic Chemistry Communication, 2014, 43, 78-80.	1.8	6
88	A Porous 4-Fold-Interpenetrated Chiral Framework Exhibiting Vapochromism, Single-Crystal-to-Single-Crystal Solvent Exchange, Gas Sorption, and a Poisoning Effect. Inorganic Chemistry, 2013, 52, 2353-2360.	1.9	114
89	Tandem Postsynthetic Modification of a Metal–Organic Framework by Thermal Elimination and Subsequent Bromination: Effects on Absorption Properties and Photoluminescence. Angewandte Chemie - International Edition, 2013, 52, 4538-4543.	7.2	131
90	Tracking the Formation of a Polynuclear Co ₁₆ Complex and Its Elimination and Substitution Reactions by Mass Spectroscopy and Crystallography. Journal of the American Chemical Society, 2013, 135, 7901-7908.	6.6	162

Mohamedally Kurmoo

#	Article	IF	CITATIONS
91	Microwave and traditional solvothermal syntheses, crystal structures, mass spectrometry and magnetic properties of Coll4O4 cubes. Dalton Transactions, 2013, 42, 5439.	1.6	30
92	Iterative Mass Spectrometry and X-Ray Crystallography to Study Ion-Trapping and Rearrangements by a Flexible Cluster. Scientific Reports, 2013, 3, 3516.	1.6	24
93	Microwave versus Traditional Solvothermal Synthesis of Ni ₇ ^{II} Discs: Effect of Ligand on Exchange Reaction in Solution Studied by Electrospray Ionization-Mass Spectroscopy and Magnetic Properties. Inorganic Chemistry, 2011, 50, 7274-7283.	1.9	51
94	Exploring the Effect of Metal Ions and Counteranions on the Structure and Magnetic Properties of Five Dodecanuclear Co ^{II} and Ni ^{II} Clusters. Chemistry - A European Journal, 2011, 17, 14084-14093.	1.7	33
95	A Multifaceted Cage Cluster, [Co ^{II} ₆ O ₁₂ ⊃ X] ^{â^'} (X =) Tj ET Materials, 2010, 22, 4328-4334.	Qq1 1 0.7 3.2	/84314 rg8 78
96	Hydrogen-Bonded Dicubane Co ^{II} ₇ Single-Molecule-Magnet Coordinated by in Situ Solvothermally Generated 1,2-Bis(8-hydroxyquinolin-2-yl)ethane-1,2-diol Arranged in a Trefoil. Chemistry of Materials, 2010, 22, 2114-2119.	3.2	115
97	Traditional and Microwave-Assisted Solvothermal Synthesis and Surface Modification of Co ₇ Brucite Disk Clusters and Their Magnetic Properties. Chemistry of Materials, 2010, 22, 4295-4303.	3.2	107
98	Rigid Pillars and Double Walls in a Porous Metal-Organic Framework: Single-Crystal to Single-Crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity. Journal of the American Chemical Society, 2010, 132, 2561-2563.	6.6	620
99	Magnetic metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1353.	18.7	2,304
100	Magnetic Properties and Magnetic Structures of Synthetic Natrochalcites, NaMII2(D3O2)(MoO4)2, M = Co or Ni. Journal of the American Chemical Society, 2008, 130, 13490-13499.	6.6	24
101	Field-Induced Ferrimagnetic State in a Molecule-Based Magnet Consisting of a Co ^{II} Ion and a Chiral Triplet Bis(nitroxide) Radical. Journal of the American Chemical Society, 2007, 129, 9902-9909.	6.6	95
102	Nuclear and Magnetic Structures and Magnetic Properties of the Layered Cobalt Hydroxysulfate Co5(OH)6(SO4)2(H2O)4and Its Deuterated Analogue, Co5(OD)6(SO4)2(D2O)4. Journal of the American Chemical Society, 2006, 128, 7972-7981.	6.6	54
103	Canted Antiferromagnetism in an Organo-modified Layered Nickel Phyllosilicate. Chemistry of Materials, 2002, 14, 3829-3836.	3.2	37
104	Layered Cobalt Hydroxysulfates with Both Rigid and Flexible Organic Pillars:  Synthesis, Structure, Porosity, and Cooperative Magnetism. Journal of the American Chemical Society, 2001, 123, 10584-10594.	6.6	207
105	Two Modifications of Layered Cobaltous Terephthalate: Crystal Structures and Magnetic Properties. Journal of Solid State Chemistry, 2001, 159, 343-351.	1.4	137
106	Hard Magnets Based on Layered Cobalt Hydroxide:  The Importance of Dipolar Interaction for Long-Range Magnetic Ordering. Chemistry of Materials, 1999, 11, 3370-3378.	3.2	128
107	Superconducting and Semiconducting Magnetic Charge Transfer Salts: (BEDT-TTF)4AFe(C2O4)3.cntdot.C6H5CN (A = H2O, K, NH4). Journal of the American Chemical Society, 1995, 117, 12209-12217.	6.6	578