
Thomas Cucchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/488795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of captivity on craniomandibular and calcaneal ontogenetic trajectories in wild boar. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 575-585.	1.3	4
2	Are petrous bones just a repository of ancient biomolecules? Investigating biosystematic signals in sheep petrous bones using 3D geometric morphometrics. Journal of Archaeological Science: Reports, 2022, 43, 103447.	0.5	1
3	Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history. Nature Communications, 2022, 13, 2399.	12.8	12
4	Ancient DNA refines taxonomic classification of Roman equids north of the Alps, elaborated with osteomorphology and geometric morphometrics. Journal of Archaeological Science, 2022, 143, 105624.	2.4	4
5	How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar (Sus scrofa). Evolutionary Biology, 2021, 48, 27-40.	1.1	16
6	EVOSHEEP: the makeup of sheep breeds in the ancient Near East. Antiquity, 2021, 95, .	1.0	4
7	Corrigendum to: Examining the effect of feralization on craniomandibular morphology in pigs, Sus scrofa (Artiodactyla: Suidae). Biological Journal of the Linnean Society, 2021, 133, 249-249.	1.6	0
8	Constraints associated with captivity alter craniomandibular integration in wild boar. Journal of Anatomy, 2021, 239, 489-497.	1.5	7
9	The origins of the domesticate brown rat (<i>Rattus norvegicus</i>) and its pathways to domestication. Animal Frontiers, 2021, 11, 78-86.	1.7	8
10	Animal domestication: from distant past to current development and issues. Animal Frontiers, 2021, 11, 6-9.	1.7	6
11	Bones geometric morphometrics illustrate 10th millennium cal. BP domestication of autochthonous Cypriot wild boar (Sus scrofa circeus nov. ssp). Scientific Reports, 2021, 11, 11435.	3.3	7
12	Reconsidering domestication from a process archaeology perspective. World Archaeology, 2021, 53, 56-77.	1.1	36
13	The mark of captivity: plastic responses in the ankle bone of a wild ungulate (<i>Sus scrofa</i>). Royal Society Open Science, 2020, 7, 192039.	2.4	30
14	Examining the effect of feralization on craniomandibular morphology in pigs, <i>Sus scrofa</i> (Artiodactyla: Suidae). Biological Journal of the Linnean Society, 2020, 131, 870-879.	1.6	13
15	Investigating the impact of captivity and domestication on limb bone cortical morphology: an experimental approach using a wild boar model. Scientific Reports, 2020, 10, 19070.	3.3	27
16	Tracking the Near Eastern origins and European dispersal of the western house mouse. Scientific Reports, 2020, 10, 8276.	3.3	47
17	Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17231-17238.	7.1	101
18	Taxonomic and phylogenetic signals in bovini cheek teeth: Towards new biosystematic markers to explore the history of wild and domestic cattle, Journal of Archaeological Science, 2019, 109, 104993	2.4	14

Тномая Сиссні

#	Article	IF	CITATIONS
19	Dental Shape Variation and Phylogenetic Signal in the Rattini Tribe Species of Mainland Southeast Asia. Journal of Mammalian Evolution, 2019, 26, 435-446.	1.8	15
20	Exploring Rattus praetor (Rodentia, Muridae) as a possible species complex using geometric morphometrics on dental morphology. Mammalian Biology, 2018, 92, 62-67.	1.5	9
21	Postglacial recolonization and Holocene diversification of Crocidura suaveolens (Mammalia,) Tj ETQq1 1 0.7843 190, 1-10.	14 rgBT /0 3.0	Overlock 10 Tf 6
22	The development of new husbandry and economic models in Gaul between the Iron Age and the Roman Period: New insights from pig bones and teeth morphometrics. Journal of Archaeological Science, 2018, 99, 10-18.	2.4	11
23	Phenotypic diversity in Bronze Age pigs from the Alpine and Central Plateau regions of Switzerland. Journal of Archaeological Science: Reports, 2018, 21, 38-46.	0.5	5
24	Wild game or farm animal? Tracking human-pig relationships in ancient times through stable isotope analysis. , 2018, , 81-96.		16
25	Systematics and evolution of the Meriones shawii/grandis complex (Rodentia, Gerbillinae) during the Late Quaternary in northwestern Africa: Exploring the role of environmental and anthropogenic changes. Quaternary Science Reviews, 2017, 164, 199-216.	3.0	22
26	Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies. Royal Society Open Science, 2017, 4, 160997.	2.4	61
27	Reply to Dekel et al.: Preagricultural commensal niches for the house mouse and origins of human sedentism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5281-E5282.	7.1	0
28	Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4099-4104.	7.1	91
29	A landmark-based approach for assessing the reliability of mandibular tooth crowding as a marker of dog domestication. Journal of Archaeological Science, 2017, 85, 41-50.	2.4	30
30	A test for paedomorphism in domestic pig cranial morphology. Biology Letters, 2017, 13, 20170321.	2.3	26
31	Earliest "Domestic―Cats in China Identified as Leopard Cat (Prionailurus bengalensis). PLoS ONE, 2016, 11, e0147295.	2.5	22
32	The use of close-range photogrammetry in zooarchaeology: Creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science: Reports, 2016, 9, 87-93.	0.5	63
33	Wild, domestic and feral? Investigating the status of suids in the Romanian Gumelniţa (5th mil. cal BC) with biogeochemistry and geometric morphometrics. Journal of Anthropological Archaeology, 2016, 42, 27-36.	1.6	45
34	An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments. Trends in Ecology and Evolution, 2016, 31, 633-645.	8.7	121
35	Social Complexification and Pig (Sus scrofa) Husbandry in Ancient China: A Combined Geometric Morphometric and Isotopic Approach. PLoS ONE, 2016, 11, e0158523.	2.5	41
36	Phenotype and animal domestication: A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evolutionary Biology, 2015, 15, 6.	3.2	65

Тномая Сиссні

#	Article	IF	CITATIONS
37	Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. Journal of Archaeological Science, 2015, 57, 345-354.	2.4	14
38	Unravelling the complexity of domestication: a case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130616.	4.0	43
39	A geometric morphometric re-evaluation of the use of dental form to explore differences in horse (Equus caballus) populations and its potential zooarchaeological application. Journal of Archaeological Science, 2014, 41, 904-910.	2.4	49
40	Using traditional biometrical data to distinguish West Palearctic wild boar and domestic pigs in the archaeological record: new methods and standards. Journal of Archaeological Science, 2014, 43, 1-8.	2.4	40
41	THE CHANGING PACE OF INSULAR LIFE: 5000 YEARS OF MICROEVOLUTION IN THE ORKNEY VOLE <i>(MICROTUS ARVALIS ORCADENSIS)</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 2804-2820.	2.3	52
42	The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. Journal of Archaeological Science, 2014, 43, 159-167.	2.4	61
43	Ancient Urban Ecology Reconstructed from Archaeozoological Remains of Small Mammals in the Near East. PLoS ONE, 2014, 9, e91795.	2.5	27
44	Divergent evolutionary processes associated with colonization of offshore islands. Molecular Ecology, 2013, 22, 5205-5220.	3.9	92
45	The urban ecology of Iron Age Tel Megiddo: using microvertebrate remains as ancient bio-indicators. Journal of Archaeological Science, 2013, 40, 257-267.	2.4	6
46	The long and winding road: identifying pig domestication through molar size and shape. Journal of Archaeological Science, 2013, 40, 735-743.	2.4	169
47	On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biological Journal of the Linnean Society, 2013, 108, 917-928.	1.6	37
48	Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics. Molecular Biology and Evolution, 2013, 30, 824-832.	8.9	196
49	A bioarchaeological investigation of three late Chalcolithic pits at Ovçular Tepesi (Nakhchivan,) Tj ETQq1 1 0.78	4314 rgB1 1.2	「 /Qyerlock 1
50	First wave of cultivators spread to Cyprus at least 10,600 y ago. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8445-8449.	7.1	125
51	Seasonality of birth and diet of pigs from stable isotope analyses of tooth enamel (δ18O, δ13C): a modern reference data set from Corsica, France. Journal of Archaeological Science, 2012, 39, 2023-2035.	2.4	36
52	A Dig into the Past Mitochondrial Diversity of Corsican Goats Reveals the Influence of Secular Herding Practices. PLoS ONE, 2012, 7, e30272.	2.5	10
53	On the origin of the house mouse synanthropy and dispersal in the Near East and Europe:. , 2012, , 65-93.		37
54	Microevolutionary relationships between phylogeographical history, climate change and morphological variability in the common vole (<i>Microtus arvalis</i>) across France. Journal of Biogeography, 2012, 39, 698-712.	3.0	12

Тномая Сиссні

#	Article	IF	CITATIONS
55	New insights into the invasive process of the eastern house mouse (<i>Mus musculus musculus</i>): Evidence from the burnt houses of Chalcolithic Romania. Holocene, 2011, 21, 1195-1202.	1.7	27
56	Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. Journal of Archaeological Science, 2011, 38, 11-22.	2.4	157
57	House mouse dispersal in Iron Age Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society, 2011, 102, 483-497.	1.6	38
58	Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1034-1043.	2.6	94
59	New insights into pig taxonomy, domestication and human dispersal in Island South East Asia: molar shape analysis of <i>Sus</i> remains from Niah Caves, Sarawak. International Journal of Osteoarchaeology, 2009, 19, 508-530.	1.2	71
60	Uluburun shipwreck stowaway house mouse: molar shape analysis and indirect clues about the vessel's last journey. Journal of Archaeological Science, 2008, 35, 2953-2959.	2.4	47
61	The Pigs of Island Southeast Asia and the Pacific: New Evidence for Taxonomic Status and Human-Mediated Dispersal. Asian Perspectives, 2008, 47, 59-74.	0.1	81
62	Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4834-4839.	7.1	286
63	Evolution of an invasive rodent on an archipelago as revealed by molar shape analysis: the house mouse in the Canary Islands. Journal of Biogeography, 2007, 34, 1412-1425.	3.0	34
64	Origin and Diffusion of the House Mouse in the Mediterranean. Human Evolution, 2006, 21, 95-106.	2.0	81
65	First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean: a zooarchaeological revision of subfossil occurrences. Biological Journal of the Linnean Society, 2005, 84, 429-445.	1.6	192
66	Introduction involontaire de la souris domestique (Mus musculus domesticus) Ã Chypre dÃ s le Néolithique précéramique ancien (fin IXe et VIIIe millénaires av. JC.). Comptes Rendus - Palevol, 2002, 1 235-241.	., 0.2	49
67	A History of Pig Domestication: New Ways of Exploring a Complex Process. , 0, , 39-48.		8