
Haisheng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887911/publications.pdf Version: 2024-02-01

HAISHENC HE

#	Article	IF	CITATIONS
1	Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 36-48.	5.7	384
2	A Tumorâ€Microenvironmentâ€Responsive Lanthanide–Cyanine FRET Sensor for NIRâ€II Luminescenceâ€Lifeti In Situ Imaging of Hepatocellular Carcinoma. Advanced Materials, 2020, 32, e2001172.	^{me} 11.1	166
3	Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale, 2017, 9, 1174-1183.	2.8	140
4	Bright and Stable NIRâ€II Jâ€Aggregated AIE Dibodipyâ€Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 3967-3973.	7.2	128
5	Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1939-1948.	1.7	96
6	ROS/RNS and Base Dual Activatable Merocyanineâ€Based NIRâ€II Fluorescent Molecular Probe for in vivo Biosensing. Angewandte Chemie - International Edition, 2021, 60, 26337-26341.	7.2	92
7	An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discovery Today, 2018, 23, 1079-1088.	3.2	86
8	Bioimaging of Intravenous Polymeric Micelles Based on Discrimination of Integral Particles Using an Environment-Responsive Probe. Molecular Pharmaceutics, 2016, 13, 4013-4019.	2.3	58
9	Visual validation of the measurement of entrapment efficiency of drug nanocarriers. International Journal of Pharmaceutics, 2018, 547, 395-403.	2.6	55
10	Influence of Particle Geometry on Gastrointestinal Transit and Absorption following Oral Administration. ACS Applied Materials & amp; Interfaces, 2017, 9, 42492-42502.	4.0	51
11	Tracking translocation of glucan microparticles targeting M cells: implications for oral drug delivery. Journal of Materials Chemistry B, 2016, 4, 2864-2873.	2.9	49
12	Biomimetic thiamine- and niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharmaceutica Sinica B, 2018, 8, 97-105.	5.7	48
13	Glucan microparticles thickened with thermosensitive gels as potential carriers for oral delivery of insulin. Journal of Materials Chemistry B, 2016, 4, 4040-4048.	2.9	42
14	Reassessment of long circulation <i>via</i> monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horizons, 2018, 3, 397-407.	4.1	42
15	In vivo fate of lipid-silybin conjugate nanoparticles: Implications on enhanced oral bioavailability. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2643-2654.	1.7	40
16	The biological fate of orally administered mPEG-PDLLA polymeric micelles. Journal of Controlled Release, 2020, 327, 725-736.	4.8	39
17	Bioimaging of Intact Polycaprolactone Nanoparticles Using Aggregation aused Quenching Probes: Sizeâ€Dependent Translocation via Oral Delivery. Advanced Healthcare Materials, 2018, 7, e1800711.	3.9	33
18	The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery. Chinese Chemical Letters, 2021, 32, 1545-1549.	4.8	28

HAISHENG HE

#	Article	IF	CITATIONS
19	Bright and Stable NIRâ€II Jâ€Aggregated AIE Dibodipyâ€Based Fluorescent Probe for Dynamic Inâ€Vivo Bioimaging. Angewandte Chemie, 2021, 133, 4013-4019.	1.6	26
20	The long-circulating effect of pegylated nanoparticles revisited via simultaneous monitoring of both the drug payloads and nanocarriers. Acta Pharmaceutica Sinica B, 2022, 12, 2479-2493.	5.7	26
21	In Vivo Fate of Biomimetic Mixed Micelles as Nanocarriers for Bioavailability Enhancement of Lipid–Drug Conjugates. ACS Biomaterials Science and Engineering, 2017, 3, 2399-2409.	2.6	24
22	Effect of particle size on the pharmacokinetics and biodistribution of parenteral nanoemulsions. International Journal of Pharmaceutics, 2020, 586, 119551.	2.6	23
23	Simulation of the In Vivo Fate of Polymeric Nanoparticles Traced by Environment-Responsive Near-Infrared Dye: A Physiologically Based Pharmacokinetic Modelling Approach. Molecules, 2021, 26, 1271.	1.7	23
24	InÂvivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging. Acta Pharmaceutica Sinica B, 2021, 11, 1056-1068.	5.7	21
25	Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles. Biomaterials Science, 2019, 7, 4273-4282.	2.6	19
26	Accurate and sensitive probing of onset of micellization based on absolute aggregation aused quenching effect. Aggregate, 2022, 3, .	5.2	16
27	Rod-like mesoporous silica nanoparticles facilitate oral drug delivery via enhanced permeation and retention effect in mucus. Nano Research, 2022, 15, 9243-9252.	5.8	15
28	Loss of integrity of doxorubicin liposomes during transcellular transportation evidenced by fluorescence resonance energy transfer effect. Colloids and Surfaces B: Biointerfaces, 2018, 171, 224-232.	2.5	14
29	NIRâ€II Jâ€Aggregates Labelled Mesoporous Implant for Imagingâ€Guided Osteosynthesis with Minimal Invasion. Advanced Functional Materials, 2021, 31, 2100656.	7.8	14
30	Discriminating against injectable fat emulsions with similar formulation based on water quenching fluorescent probe. Chinese Chemical Letters, 2020, 31, 875-879.	4.8	12
31	ROS/RNS and Base Dual Activatable Merocyanineâ€Based NIRâ€II Fluorescent Molecular Probe for in vivo Biosensing. Angewandte Chemie, 2021, 133, 26541-26545.	1.6	11
32	Novel Pharmaceutical Strategies for Enhancing Skin Penetration of Biomacromolecules. Pharmaceuticals, 2022, 15, 877.	1.7	10
33	Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. International Journal of Pharmaceutics, 2020, 587, 119682.	2.6	7
34	Correction: Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horizons, 2018, 3, 448-448.	4.1	1