David Cornu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887678/publications.pdf

Version: 2024-02-01

132	3,924	87843	155592
papers	citations	h-index	g-index
105	105	105	40.70
135 all docs	135 docs citations	135 times ranked	4353 citing authors

#	Article	IF	CITATIONS
1	Glycerol electroâ€reforming in alkaline electrolysis cells for the simultaneous production of valueâ€added chemicals and pure hydrogen – Miniâ€review. Electrochemical Science Advances, 2023, 3, .	1.2	5
2	Targeting Several Biologically Reported Targets of Glioblastoma Multiforme by Assaying 2D and 3D Cultured Cells. Cellular and Molecular Neurobiology, 2022, 42, 1909-1920.	1.7	1
3	Small angle x-ray scattering to investigate the specific surface of hydrated alginate microbeads. Food Hydrocolloids, 2022, 127, 107498.	5.6	2
4	Probing Oxygen-to-Hydrogen Peroxide Electro-Conversion at Electrocatalysts Derived from Polyaniline. Polymers, 2022, 14, 607.	2.0	0
5	Review of the Electrospinning Process and the Electro-Conversion of 5-Hydroxymethylfurfural (HMF) into Added-Value Chemicals. Materials, 2022, 15, 4336.	1.3	3
6	Flexible and reusable carbon nano-fibre membranes for airborne contaminants capture. Science of the Total Environment, 2021, 754, 142231.	3.9	18
7	Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111525.	3.8	90
8	Iridium and Ruthenium Modified Polyaniline Polymer Leads to Nanostructured Electrocatalysts with High Performance Regarding Water Splitting. Polymers, 2021, 13, 190.	2.0	19
9	Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. Journal of Experimental and Clinical Cancer Research, 2021, 40, 139.	3.5	33
10	Insights on the Electrocatalytic Seawater Splitting at Heterogeneous Nickel-Cobalt Based Electrocatalysts Engineered from Oxidative Aniline Polymerization and Calcination. Molecules, 2021, 26, 5926.	1.7	11
11	Developed Nanomaterials with a Pdcore-Fe-Pdskin Structure for Efficient Electrocatalytic Performance in Oxygen Reduction and Glycerol Oxidation Reactions in Alkaline Electrolytes. ECS Meeting Abstracts, 2021, MA2021-02, 1425-1425.	0.0	0
12	Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials Science and Engineering C, 2020, 110, 110595.	3.8	103
13	Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chemical Engineering Journal, 2020, 389, 124326.	6.6	48
14	Selfâ€Supported Electrocatalysts Derived from Nickelâ€Cobalt Modified Polyaniline Polymer for H ₂ â€Evolution and O ₂ â€Evolution Reactions. ChemCatChem, 2020, 12, 5789-5796.	1.8	9
15	Tartaric acid regulated the advanced synthesis of bismuth-based materials with tunable performance towards the electrocatalytic production of hydrogen peroxide. Journal of Materials Chemistry A, 2020, 8, 18840-18855.	5.2	19
16	Nanostructured Carbon-Nitrogen-Sulfur-Nickel Networks Derived From Polyaniline as Bifunctional Catalysts for Water Splitting. Frontiers in Chemistry, 2020, 8, 385.	1.8	13
17	Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 1865-1874.	2.3	42
18	Insights from the Physicochemical and Electrochemical Screening of the Potentiality of the Chemically Synthesized Polyaniline. Journal of the Electrochemical Society, 2020, 167, 066503.	1.3	23

#	Article	lF	Citations
19	Bromide-Regulated Anisotropic Growth of Desert-Rose-Like Nanostructured Gold onto Carbon Fiber Electrodes as Freestanding Electrocatalysts. ACS Applied Energy Materials, 2020, 3, 7560-7571.	2.5	5
20	Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catalysis Science and Technology, 2020, 10, 3071-3112.	2.1	52
21	Enhanced electrocatalytic activity and selectivity of glycerol oxidation triggered by nanoalloyed silver–gold nanocages directly grown on gas diffusion electrodes. Journal of Materials Chemistry A, 2020, 8, 8848-8856.	5.2	21
22	Segregation of copper oxide on calcium copper titanate surface induced by Graphene Oxide for Water splitting applications. Applied Surface Science, 2020, 516, 146051.	3.1	31
23	From Synthesis to Applications: Copper Calcium Titanate (CCTO) and its Magnetic and Photocatalytic Properties. ChemistryOpen, 2019, 8, 922-950.	0.9	34
24	Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes. Applied Catalysis B: Environmental, 2019, 257, 117917.	10.8	41
25	A novel 3D nanofibre scaffold conserves the plasticity of glioblastoma stem cell invasion by regulating galectin-3 and integrin- \hat{l}^21 expression. Scientific Reports, 2019, 9, 14612.	1.6	27
26	Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Materials Science and Engineering C, 2019, 102, 718-729.	3.8	151
27	Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal. Nanomaterials, 2019, 9, 1740.	1.9	80
28	Nanostructured Electrocatalytic Interfaces for Dual Electrosynthesis of Hydrogen and Organic Molecules in a Biomass-Fuelled Low External Energy Input Device. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Novel and Facile Route for the Synthesis of Tunable Boron Nitride Nanotubes Combining Atomic Layer Deposition and Annealing Processes for Water Purification. Advanced Materials Interfaces, 2018, 5, 1800056.	1.9	45
30	Electrocatalytic and Electroanalytic Investigation of Carbohydrates Oxidation on Gold-Based Nanocatalysts in Alkaline and Neutral pHs. Journal of the Electrochemical Society, 2018, 165, H425-H436.	1.3	21
31	Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol. Applied Surface Science, 2017, 411, 163-169.	3.1	67
32	Optimization of Chitosan Film-Templated Biocathode for Enzymatic Oxygen Reduction in Glucose Hybrid Biofuel Cell. Journal of the Electrochemical Society, 2017, 164, G29-G35.	1.3	14
33	Design of Boron Nitride/Gelatin Electrospun Nanofibers for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33695-33706.	4.0	135
34	Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. ChemPhysChem, 2017, 18, 2573-2605.	1.0	51
35	Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells. Catalysts, 2017, 7, 31.	1.6	23
36	Oneâ€Pot Route to Gold Nanoparticles Embedded in Electrospun Carbon Fibers as an Efficient Catalyst Material for Hybrid Alkaline Glucose Biofuel Cells. ChemElectroChem, 2016, 3, 629-637.	1.7	24

#	Article	IF	Citations
37	Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes. Scientific Reports, 2016, 6, 31565.	1.6	40
38	Fundamentals of Electrospinning. , 2015, , 1-28.		2
39	Control of Spatial Organization of Electrospun Fibers in a Carbon Felt for Enhanced Bioelectrode Performance. ChemPlusChem, 2015, 80, 440-440.	1.3	3
40	Electrospun Carbon Fibers: Promising Electrode Material for Abiotic and Enzymatic Catalysis. Journal of Physical Chemistry C, 2015, 119, 16724-16733.	1.5	13
41	Control of Spatial Organization of Electrospun Fibers in a Carbon Felt for Enhanced Bioelectrode Performance. ChemPlusChem, 2015, 80, 494-502.	1.3	8
42	Correlation between nanostructural, optical, and photoelectrical properties of P3 <scp>HT</scp> : <scp>S</scp> i <scp>NW</scp> nanocomposites for solarâ€eell application. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 670-676.	0.8	5
43	Insights on Hybrid Glucose Biofuel Cells Based on Bilirubin Oxidase Cathode and Goldâ€Based Anode Nanomaterials. ChemElectroChem, 2014, 1, 1976-1987.	1.7	23
44	Synthesis and performances of bio-sourced nanostructured carbon membranes elaborated by hydrothermal conversion of beer industry wastes. Nanoscale Research Letters, 2013, 8, 121.	3.1	6
45	Si–Zr–C–N-based hydrophobic plasma polymer membranes for small gas molecule separation. Thin Solid Films, 2013, 527, 87-91.	0.8	2
46	Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells. Nanotechnology, 2013, 24, 245402.	1.3	30
47	Silicon Nanowire/P3HT Hybrid Solar Cells: Effect of the Electron Localization at Wire Nanodiameters. Energy Procedia, 2012, 31, 136-143.	1.8	17
48	Rayleigh instability induced SiC/SiO2 necklace like nanostructures. CrystEngComm, 2012, 14, 7744.	1.3	25
49	Hybrid films based on silicon nanowires dispersed in a semiconducting polymer for thin film solar cells: Opportunities and new challenges. Synthetic Metals, 2012, 161, 2623-2627.	2.1	4
50	Influence of the silicon surface treatment on the properties of SiNWs/PVK hybrid solar cells. Synthetic Metals, 2012, 162, 1120-1125.	2.1	3
51	Silicon nanowire/poly(3-hexylthiophene) hybrids for thin film solar cells. Journal of Non-Crystalline Solids, 2012, 358, 2534-2536.	1.5	3
52	Synthesis and properties of a photovoltaic cell based on polystyrene-functionalised Si nanowires filled into a poly(N-vinylcarbazole) matrix. Materials Chemistry and Physics, 2012, 136, 431-438.	2.0	7
53	ZnO nanotubes by template-assisted sol–gel route. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	40
54	Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films. Materials Chemistry and Physics, 2012, 132, 284-291.	2.0	13

#	Article	IF	Citations
55	Influence of the polymer matrix on the efficiency of hybrid solar cells based on silicon nanowires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 173-179.	1.7	11
56	Boron nitride multiwall nanotubes decorated with BN nanosheets. CrystEngComm, 2011, 13, 6526.	1.3	19
57	CNT-Encapsulated \hat{l}^2 -SiC Nanocrystals: Enhanced Migration by Confinement in Carbon Channels. Crystal Growth and Design, 2011, 11, 1891-1895.	1.4	16
58	Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis. New Journal of Chemistry, 2011, 35, 2848.	1.4	41
59	Effect of thermal treatments on the properties of PVK/silicon nanowires films for hybrid solar cells. Synthetic Metals, 2011, 161, 1928-1933.	2.1	12
60	From soil to lab: Utilization of clays as catalyst supports in hydrogen generation from sodium borohydride fuel. Fuel, 2011, 90, 1919-1926.	3.4	21
61	Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. Journal of Membrane Science, 2011, 376, 241-246.	4.1	124
62	Rectifying Source and Drain Contacts for Effective Carrier Transport Modulation of Extremely Doped SiC Nanowire FETs. IEEE Nanotechnology Magazine, 2011, 10, 980-984.	1.1	14
63	Schottky Barrier 3C-SiC Nanowire Field Effect Transistor. Materials Science Forum, 2011, 679-680, 613-616.	0.3	2
64	Elaboration and characterization of magnetic nanocomposite fibers by electrospinning. Journal of Nanoparticle Research, 2010, 12, 2735-2740.	0.8	21
65	Cobalt-supported alumina as catalytic film prepared by electrophoretic deposition for hydrogen release applications. Applied Surface Science, 2010, 256, 7684-7691.	3.1	23
66	Field Effect Transistors Based on Catalyst-Free Grown 3C-SiC Nanowires. Materials Science Forum, 2010, 645-648, 1235-1238.	0.3	7
67	Synthesis of polystyrene coated SiC nanowires as fillers in a polyurethane matrix for electromechanical conversion. Nanotechnology, 2010, 21, 145610.	1.3	21
68	A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route. Nanoscale, 2010, 2, 215-217.	2.8	69
69	Strong deviations from Fowler-Nordheim behavior for field emission from individual SiC nanowires due to restricted bulk carrier generation. Physical Review B, 2009, 79, .	1.1	31
70	Shaping potentialities of aluminum nitride polymeric precursors. Journal of the European Ceramic Society, 2009, 29, 857-861.	2.8	16
71	Preparation of ZnO nanoparticles localized on SiC@SiO2 nanocables by a physical templating method. Journal of the European Ceramic Society, 2009, 29, 863-867.	2.8	8
72	Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers. Journal of the European Ceramic Society, 2009, 29, 851-855.	2.8	12

#	Article	IF	Citations
73	Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Applied Surface Science, 2009, 255, 7147-7152.	3.1	48
74	Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires. Journal Physics D: Applied Physics, 2009, 42, 055503.	1.3	68
75	Preparation of boron nitride-based coatings on metallic substrates via infrared irradiation of dip-coated polyborazylene. Journal of Materials Chemistry, 2009, 19, 2671.	6.7	30
76	Preparation of BN Microtubes/Nanotubes with a Unique Chemical Process. Journal of Physical Chemistry C, 2008, 112, 18325-18330.	1.5	38
77	Synthesis, and two photon absorption properties of 7,7′-(iminundecahydro-closo-dodecaborate)-9,9′-(dihexyl)-2,2′-bifluorene. Chemical Communications, 2008, , 3765.	2.2	7
78	Borazine Based Preceramic Polymers for Advanced BN Materials. , 2008, , 351-371.		1
79	Dots Formation by CVD in the SiC-Si Hetero-System. Materials Science Forum, 2008, 600-603, 571-574.	0.3	1
80	Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies. Physical Review B, 2008, 77, .	1.1	71
81	Effects of p-doping on the thermal sensitivity of individual Si nanowires. Applied Physics Letters, 2008, 93, 193105.	1.5	6
82	Large-scale preparation of faceted Si $<$ sub $>$ 3 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ nanorods from \hat{l}^2 -SiC nanowires. Nanotechnology, 2007, 18, 335305.	1.3	17
83	Driving self-sustained vibrations of nanowires with a constant electron beam. Physical Review B, 2007, 76, .	1.1	23
84	High Q factor for mechanical resonances of batch-fabricated SiC nanowires. Applied Physics Letters, 2007, 90, 043113.	1.5	48
85	Design of a Series of PreceramicB-Tri(methylamino)borazine-Based Polymers as Fiber Precursors:Â Architecture, Thermal Behavior, and Melt-Spinnabilityâ€. Macromolecules, 2007, 40, 1018-1027.	2.2	39
86	Synthesis of Boron Nitride Nanotubes by a Template-Assisted Polymer Thermolysis Process. Journal of Physical Chemistry C, 2007, 111, 13378-13384.	1.5	74
87	Self-Oscillations in Field Emission Nanowire Mechanical Resonators:  A Nanometric dcâ^'ac Conversion. Nano Letters, 2007, 7, 2252-2257.	4.5	88
88	A Raman Spectroscopy Study of Individual SiC Nanowires. Advanced Functional Materials, 2007, 17, 939-943.	7.8	168
89	Very Long SiCâ€Based Coaxial Nanocables with Tunable Chemical Composition. Advanced Functional Materials, 2007, 17, 3251-3257.	7.8	80
90	Ultra high sensitive detection of mechanical resonances of nanowires by field emission microscopy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1645-1652.	0.8	9

#	Article	IF	CITATIONS
91	Recent Developments in Polymerâ€Derived Ceramic Fibers (PDCFs): Preparation, Properties and Applications – A Review. Soft Materials, 2007, 4, 249-286.	0.8	71
92	Aminoboranes as versatile precursors of boron nitride: Preparation of BN matrices, coatings and fibres. Special Publication - Royal Society of Chemistry, 2007, , 84-87.	0.0	0
93	Kinetic Modeling of the Polymer-Derived Ceramics Route:Â Investigation of the Thermal Decomposition Kinetics of Poly[B-(methylamino)borazine] Precursors into Boron Nitride. Journal of Physical Chemistry B, 2006, 110, 9048-9060.	1.2	51
94	Synthesis, Characterization, and UVâ^'vis Linear Absorption of Centrosymmetric Ï€-Systems Incorporatingcloso-Dodecaborate Clusters. Inorganic Chemistry, 2006, 45, 8743-8748.	1.9	24
95	Boron- and Nitrogen-Containing Polymers. , 2006, , 149-173.		1
96	Structural and Mechanical Behavior of Boron Nitride Fibers Derived from Poly[(Methylamino)Borazine] Precursors: Optimization of the Curing and Pyrolysis Procedures. Journal of the American Ceramic Society, 2006, 89, 42-49.	1.9	39
97	Controlling the chemistry, morphology and structure of boron nitride-based ceramic fibers through a comprehensive mechanistic study of the reactivity of spinnable polymers with ammonia. Journal of Materials Chemistry, 2006, 16, 3126.	6.7	45
98	Kinetic Investigation of the Curing and Pyrolysis Procedures Used for the Preparation of Polymer-Derived Boron Nitride Fibres. Advances in Science and Technology, 2006, 45, 726.	0.2	2
99	New method of synthesis of 6-hydroxy-nido-decaborane 6-(OH)B10H13 by cage opening of closo-[B10H10]2â°. Journal of Organometallic Chemistry, 2005, 690, 2787-2789.	0.8	27
100	Alkylaminoborazine-based precursors for the preparation of boron nitride fibers by the polymer-derived ceramics (PDCs) route. Journal of the European Ceramic Society, 2005, 25, 111-121.	2.8	62
101	Complete characterisation of BN fibres obtained from a new polyborylborazine. Journal of the European Ceramic Society, 2005, 25, 137-141.	2.8	15
102	Preparation of high-temperature stable SiBCN fibers from tailored single source polyborosilazanes. Journal of the European Ceramic Society, 2005, 25, 251-256.	2.8	64
103	Crystallinity, Crystalline Quality, and Microstructural Ordering in Boron Nitride Fibers. Journal of the American Ceramic Society, 2005, 88, 1607-1614.	1.9	33
104	Synthesis of Boron Nitride with Ordered Mesostructure. Advanced Materials, 2005, 17, 571-574.	11.1	136
105	New Method of Synthesis of 6-Hydroxy-nido-decaborane 6-(OH)B10H13 by Cage Opening of closo-[B10H10]2 ChemInform, 2005, 36, no.	0.1	0
106	Borylborazines as New Precursors for Boron Nitride Fibres ChemInform, 2005, 36, no.	0.1	0
107	Synthesis and X-ray structural characterization of the triphenylphosphine derivative of the closo-dodecaborate anion, closo-[B12H11P(C6H5)3][N(n-C4H9)4]. Journal of Organometallic Chemistry, 2005, 690, 2745-2749.	0.8	20
108	Borylborazines as new precursors for boron nitride fibres. Journal of Organometallic Chemistry, 2005, 690, 2809-2814.	0.8	37

#	Article	IF	CITATIONS
109	Preparation of \hat{l}^2 -SiC nanowires and SiC@BN nanocables. European Physical Journal Special Topics, 2005, 124, 99-102.	0.2	8
110	Synthesis, characterization and optical properties of π-conjugated systems incorporating closo-dodecaborate clusters: new potential candidates for two-photon absorption processes. Dalton Transactions, 2005, , 3065.	1.6	31
111	Evolution of structural features and mechanical properties during the conversion of poly[(methylamino)borazine] fibers into boron nitride fibers. Journal of Solid State Chemistry, 2004, 177, 1803-1810.	1.4	35
112	High-resolution 15N solid-state NMR investigations on borazine-based precursors. Applied Organometallic Chemistry, 2004, 18, 227-232.	1.7	15
113	Synthesis and X-ray structural characterisation of the tetramethylene oxonium derivative of the hydrodecaborate anion. A versatile route for derivative chemistry of [B10H10]2â~. Journal of Organometallic Chemistry, 2004, 689, 2581-2585.	0.8	28
114	New Sol-Gel Route for Processing of PMN Thin Films. Journal of Sol-Gel Science and Technology, 2003, 26, 1109-1112.	1.1	3
115	Synthesis and molecular structure of 2,4,6-tri[bis(diisopropylamino)boryl(methylamino)]borazine, [(NiPr2)2B(Me)N]3B3N3H3. Applied Organometallic Chemistry, 2003, 17, 68-72.	1.7	5
116	Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom. Journal of Materials Chemistry, 2003, 13, 3058.	6.7	42
117	High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine. Journal of Materials Chemistry, 2003, 13, 274.	6.7	49
118	Synthesis of 12-Hydroxy and 12-Dioxane Derivatives of the closo-1-Carbadodecaborate(1-) Ion. Variations on the PleÅjek's Cobalt Bis(dicarbollide) Pattern. Collection of Czechoslovak Chemical Communications, 2002, 67, 953-964.	1.0	19
119	Insights in the sol–gel processing of Pb(Mg1/3Nb2/3)O3. The synthesis and crown structure of a new lead magnesium cluster: Pb6Mg12(μ-OAc)6(μ2,Î-2-OAc)18(μ3,Î-2-OC2H4OPri)12. Inorganic Chemistry Communication, 2002, 5, 316-318.	1.8	6
120	Some 2,6-bis(dimethylamino)phenyl–mercury(II) and –boron complexes. Polyhedron, 2002, 21, 635-640.	1.0	6
121	Synthesis of [B12H12]2â^ based extractants and their application for the treatment of nuclear wastes. Journal of Organometallic Chemistry, 2002, 657, 83-90.	0.8	26
122	Pyrolysis of poly[2,4,6-tri(methylamino)borazine] and its conversion into BN fibers. Journal of Organometallic Chemistry, 2002, 657, 91-97.	0.8	43
123	Porous boron nitride supports obtained from molecular precursors Journal of Organometallic Chemistry, 2002, 657, 98-106.	0.8	38
124	Direct synthesis of \hat{l}^2 -SiC and h-BN coated \hat{l}^2 -SiC nanowires. Solid State Communications, 2002, 124, 157-161.	0.9	42
125	Influence of Molecular Precursor Structure on the Crystallinity of Boron Nitride. Journal of Solid State Chemistry, 2000, 154, 137-140.	1.4	12
126	Conversion of B(NHCH3)3 into boron nitride and polyborazine fibres and tubular BN structures derived therefrom. Journal of Materials Chemistry, 1999, 9, 757-761.	6.7	26

#	Article	IF	CITATION
127	Boron nitride matrices and coatings from boryl borazine molecular precursors. Journal of Materials Chemistry, 1999, 9, 2605-2610.	6.7	29
128	Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si3N4–BN Composite Ceramic Preparation. Journal of Solid State Chemistry, 1997, 133, 164-168.	1.4	19
129	Conversion of tris(isopropylamino)borane to polyborazines. Thermal degradation to boron nitride. Polyhedron, 1996, 15, 851-859.	1.0	20
130	Microtextural and Microstructural Evolution in Poly[(Alkylamino)Borazine]-Derived Fibers During Their Conversion Into Boron Nitride Fibers., 0,, 43-50.		0
131	Polyborosilazane-Derived Ceramic Fibers in the Si-B-C-N Quaternary System for High-Temperature Applications., 0,, 35-42.		5
132	Synthesis and Characterization of Cubic Silicon Carbide (\hat{l}^2 -SiC) and Trigonal Silicon Nitride (\hat{l}_\pm -Si3N4) Nanowires. Ceramic Engineering and Science Proceedings, 0, , 81-88.	0.1	0