Abdulhadi Baykal

List of Publications by Citations

Source: https://exaly.com/author-pdf/4887564/abdulhadi-baykal-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 13,878 511 59 h-index g-index citations papers 16,827 536 4.1 7.21 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
511	Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization. <i>Journal of Alloys and Compounds</i> , 2009 , 472, 18-23	5.7	203
510	Structural and magnetic properties of CoxZn1NFe2O4 nanocrystals synthesized by microwave method. <i>Polyhedron</i> , 2009 , 28, 2887-2892	2.7	195
509	Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. <i>Journal of Alloys and Compounds</i> , 2009 , 479, 49-55	5.7	183
508	Synthesis and characterization of CoxZn1\(\text{IF}e2O4\) magnetic nanoparticles via a PEG-assisted route. Journal of Magnetism and Magnetic Materials, 2009 , 321, 2170-2177	2.8	172
507	The Large Observatory for X-ray Timing (LOFT). Experimental Astronomy, 2012, 34, 415-444	1.3	148
506	Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. <i>Scripta Materialia</i> , 2007 , 57, 441-444	5.6	141
505	Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. <i>Journal of Alloys and Compounds</i> , 2009 , 486, 325-329	5.7	138
504	CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. <i>Journal of Alloys and Compounds</i> , 2008 , 464, 514-518	5.7	132
503	Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 452, 380-388	2.8	128
502	Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of Alloys and Compounds, 2008 , 462, 209-213	5.7	121
501	l-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. <i>Journal of Alloys and Compounds</i> , 2009 , 484, 371-376	5.7	120
500	Magnetic, dielectric and microwave properties of MIIi substituted barium hexaferrites (M=Mn2+, Co2+, Cu2+, Ni2+, Zn2+). <i>Ceramics International</i> , 2014 , 40, 8645-8657	5.1	113
499	Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 157-162	2.8	112
498	Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 2235-2244	2.3	108
497	Correlation Between Composition and Electrodynamics Properties in Nanocomposites Based on Hard/Soft Ferrimagnetics with Strong Exchange Coupling. <i>Nanomaterials</i> , 2019 , 9,	5.4	105
496	Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 866-871	2.8	105
495	Synthesis, conductivity and dielectric characterization of salicylic acidHe3O4 nanocomposite. <i>Materials Chemistry and Physics</i> , 2010 , 123, 184-190	4.4	102

(2020-2018)

494	Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: Magneto-optical investigation. <i>Ceramics International</i> , 2018 , 44, 5751-5759	5.1	98
493	Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 476, 157-165	2.8	98
492	YafetRittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	96
491	Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. <i>Ceramics International</i> , 2018 , 44, 14242-14250	5.1	95
490	Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 2145-2149	2.8	94
489	Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bi1NAlxFeO3 (0.0 lk 10.15) nanoparticles. <i>Ceramics International</i> , 2018 , 44, 13247-13252	5.1	93
488	Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. <i>Ceramics International</i> , 2020 , 46, 7346-7354	5.1	91
487	Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of NiŒuŒn spinel ferrites. <i>Ceramics International</i> , 2020 , 46, 11124-11131	5.1	86
486	A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. <i>Physica B: Condensed Matter</i> , 2008 , 403, 3760-3764	2.8	86
485	Structural and magnetic properties of Ce-doped strontium hexaferrite. <i>Ceramics International</i> , 2018 , 44, 9000-9008	5.1	85
484	l-Histidine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 172-178	5.7	80
483	Synthesis of magnetically recyclable MnFe2O4@SiO2@Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction. <i>Applied Surface Science</i> , 2016 , 376, 16-25	6.7	78
482	Temperature dependent magnetic properties of CoFe2O4/CTAB nanocomposite synthesized by solgel auto-combustion technique. <i>Ceramics International</i> , 2013 , 39, 6551-6558	5.1	77
481	Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. <i>Journal of Alloys and Compounds</i> , 2019 , 788, 1193-1202	5.7	76
480	Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 478, 140-147	2.8	75
479	Effect of Cr 3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 458, 204-212	2.8	72
47 ⁸	Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. <i>Ceramics International</i> , 2019 , 45, 3449-3458	5.1	72
477	Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Nito spinels. <i>Journal of Alloys and Compounds</i> , 2020 , 841, 155667	5.7	71

476	Synthesis, structural and conductivity characterization of alginic acid E e3O4 nanocomposite. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 3039-3048	2.3	71
475	Structural, optical and magnetic properties of Tm substituted cobalt spinel ferrites synthesized via sonochemical approach. <i>Ultrasonics Sonochemistry</i> , 2019 , 54, 1-10	8.9	71
474	Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. <i>Ceramics International</i> , 2019 , 45, 2621-2628	5.1	71
473	Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 9520-9530	2.1	67
472	Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. <i>Ceramics International</i> , 2018 , 44, 15995-16004	5.1	67
471	Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 27, 347-353	6.3	67
470	Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	67
469	Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 3057-3067	2.3	67
468	The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. <i>Ceramics International</i> , 2019 , 45, 1691-1697	5.1	67
467	Sonochemical synthesis and physical properties of CoNiMnEuFeO nano-spinel ferrites. <i>Ultrasonics Sonochemistry</i> , 2019 , 58, 104654	8.9	66
466	Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. <i>Ceramics International</i> , 2018 , 44, 20075-20083	5.1	66
465	Synthesis and characterization of CuFe2O4 nanorods synthesized by polyol route. <i>Journal of Alloys and Compounds</i> , 2010 , 493, 493-498	5.7	66
464	Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. <i>Ceramics International</i> , 2019 , 45, 8222-8232	5.1	66
463	Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. <i>Journal of Alloys and Compounds</i> , 2018 , 762, 389-397	5.7	65
462	Peculiarities of the microwave properties of hard-soft functional composites SrTbTmFeO-AFeO (A = Co, Ni, Zn, Cu, or Mn) <i>RSC Advances</i> , 2020 , 10, 32638-32651	3.7	64
461	Magnetic and microwave properties of BaFe 12 O 19 substituted with magnetic, non-magnetic and dielectric ions. <i>Ceramics International</i> , 2015 , 41, 9602-9609	5.1	63
460	NiCuZnTbFeO nanospinel ferrites: Ultrasonic synthesis and physical properties. <i>Ultrasonics Sonochemistry</i> , 2019 , 59, 104757	8.9	63
459	Manganese/Yttrium Codoped Strontium Nanohexaferrites: Evaluation of Magnetic Susceptibility and Mossbauer Spectra. <i>Nanomaterials</i> , 2018 , 9,	5.4	63

(2016-2019)

458	Uptake and translocation of magnetite (FeO) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). <i>Chemosphere</i> , 2019 , 226, 110-122	8.4	62
457	Synthesis and characterization of dl-thioctic acid (DLTA)He3O4 nanocomposite. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9218-9225	5.7	62
456	Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. <i>Ceramics International</i> , 2019 , 45, 11989-12000	5.1	60
455	Magnetic and optical properties of Zn 2+ ion substituted barium hexaferrites. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 430, 29-35	2.8	60
454	Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 486, 165254	2.8	59
453	Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. <i>Polyhedron</i> , 2013 , 65, 282-287	2.7	59
452	Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 2555-2561	5.7	59
451	Sonochemical synthesis of Eu substituted CoFeO nanoparticles and their structural, optical and magnetic properties. <i>Ultrasonics Sonochemistry</i> , 2019 , 58, 104621	8.9	58
450	A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye. <i>Applied Surface Science</i> , 2014 , 290, 499-503	6.7	58
449	Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles. <i>Ceramics International</i> , 2015 , 41, 10915-10922	5.1	58
448	Enhanced Opto-Magneto Properties of NixMg1NFe2O4 (0.0 lk 🛮 .0) Ferrites Nano-Catalysts. Journal of Nanoelectronics and Optoelectronics, 2017 , 12, 1326-1333	1.3	58
447	Synthesis and characterization of Piperidine-4-carboxylic acid functionalized Fe3O4 nanoparticles as a magnetic catalyst for Knoevenagel reaction. <i>Materials Research Bulletin</i> , 2012 , 47, 2480-2486	5.1	57
447		5.1 5.1	<i>57 57</i>
	as a magnetic catalyst for Knoevenagel reaction. <i>Materials Research Bulletin</i> , 2012 , 47, 2480-2486 Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles.		
446	as a magnetic catalyst for Knoevenagel reaction. <i>Materials Research Bulletin</i> , 2012 , 47, 2480-2486 Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. <i>Ceramics International</i> , 2019 , 45, 6021-6029 Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles.	5.1	57
446	as a magnetic catalyst for Knoevenagel reaction. <i>Materials Research Bulletin</i> , 2012 , 47, 2480-2486 Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. <i>Ceramics International</i> , 2019 , 45, 6021-6029 Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. <i>Journal of Rare Earths</i> , 2019 , 37, 871-878 Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution. <i>Journal of</i>	5.1 3.7	57 56
446 445 444	as a magnetic catalyst for Knoevenagel reaction. <i>Materials Research Bulletin</i> , 2012 , 47, 2480-2486 Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. <i>Ceramics International</i> , 2019 , 45, 6021-6029 Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. <i>Journal of Rare Earths</i> , 2019 , 37, 871-878 Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution. <i>Journal of Alloys and Compounds</i> , 2018 , 767, 966-975 Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19	5.1 3.7 5.7	575656

440	Structural, magnetic, optical properties and cation distribution of nanosized NiCuZnTmFeO (0.0 lk ld.10) spinel ferrites synthesized by ultrasound irradiation. <i>Ultrasonics Sonochemistry</i> , 2019 , 57, 203-211	8.9	54
439	Structural investigation and hyperfine interactions of BaBi x La x Fe 120x O 19 (0.0lk 0.5) hexaferrites. <i>Ceramics International</i> , 2016 , 42, 3380-3387	5.1	54
438	Acid Functionalized Multiwall Carbon Nanotube/Magnetite (MWCNT)-COOH/Fe3O4 Hybrid: Synthesis, Characterization and Conductivity Evaluation. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 726-735	3.2	54
437	Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. <i>Journal of Magnetism and Magnetic Materials</i> , 2020 , 510, 166933	2.8	53
436	Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol. <i>Materials Research Bulletin</i> , 2014 , 60, 79-87	,5.1	53
435	Characterization of NiFe2O4 nanoparticles synthesized by various methods. <i>Chemical Papers</i> , 2009 , 63,	1.9	53
434	Magnetic and optical properties of Cu1\(\mathbb{Z}\)TnxFe2O4 nanoparticles dispersed in a silica matrix by a sol\(\mathbb{G}\)el auto-combustion method. Ceramics International, 2015, 41, 231-239	5.1	52
433	Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: Sol G el autocombustion synthesis and its magnetic characterization. <i>Ceramics International</i> , 2013 , 39, 5651-5658	5.1	51
432	Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 327, 151-158	2.8	51
431	Recent X-Ray Measurements of the Accretion-powered Pulsar 4U 1907+09. <i>Astrophysical Journal</i> , 1998 , 496, 386-394	4.7	51
430	Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe 12Bx O 19 (0.0 \square x \square 0.33) hexaferrites. <i>Materials Research Bulletin</i> , 2016 , 80, 263-272	5.1	51
429	Impact of manganese ferrite (MnFeO) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). <i>Environmental Pollution</i> , 2018 , 243, 872-881	9.3	50
428	Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. <i>Ceramics International</i> , 2018 , 44, 12511-12519	5.1	49
427	MBsbauer Studies and Magnetic Properties of Cubic CuFe2O4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 557-564	1.5	49
426	Structural and magnetic properties of triethylene glycol stabilized ZnxCo1\(\mathbb{R}\)Fe2O4 nanoparticles. <i>Materials Research Bulletin</i> , 2012 , 47, 2442-2448	5.1	49
425	Microwave-induced combustion synthesis and characterization of NixCo1⊠Fe2O4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0). <i>Open Chemistry</i> , 2008 , 6, 125-130	1.6	49
424	Morphology and magnetic traits of strontium nanohexaferrites: Effects of manganese/yttrium co-substitution. <i>Journal of Rare Earths</i> , 2019 , 37, 732-740	3.7	48
423	CeNd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties. <i>Ceramics International</i> , 2019 , 45, 16147-16156	5.1	48

(2016-2020)

422	Magnetic and microwave properties of SrFe12O19/MCe0.04Fe1.96O4 (M = Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 5858-5870	5.5	48	
421	The Temperature Effect on Magnetic Properties of NiFe2O4 Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 1587-1597	3.2	48	
420	Polyol synthesis of (polyvinylpyrrolidone) PVPMn3O4 nanocomposite. <i>Journal of Alloys and Compounds</i> , 2010 , 502, 199-205	5.7	48	
419	Synthesis and magnetic properties of octahedral ferrite Nito1Fe2O4 nanocrystals. <i>Open Chemistry</i> , 2007 , 5, 570-580	1.6	47	
418	Strong correlation between Dy3+ concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. <i>Journal of Industrial and Engineering Chemistry</i> , 2020 , 90, 251-259	6.3	47	
417	Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. <i>Ceramics International</i> , 2019 , 45, 6828-6835	5.1	47	
416	AC susceptibility and Mossbauer study of Ce3+ ion substituted SrFe12O19 nanohexaferrites. <i>Ceramics International</i> , 2018 , 44, 10470-10477	5.1	46	
415	Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes. <i>Synthetic Metals</i> , 2014 , 187, 75-80	3.6	46	
414	Synthesis and conductivity evaluation of PVTriHe3O4 nanocomposite. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 484-489	3.9	46	
413	Study of tungsten oxide effect on the performance of BaTiO3 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 13509-13518	2.1	45	
412	Synthesis and magneto-optical properties of triethylene glycol stabilized Mn1Zn Fe2O4 nanoparticles. <i>Journal of Alloys and Compounds</i> , 2015 , 619, 5-11	5.7	45	
411	Microstructural, Optical, and Magnetic Properties of Vanadium-Substituted Nickel Spinel Nanoferrites. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 1057-1065	1.5	45	
410	Synthesis and characterization of poly(vinyl phosphonic acid) (PVPA) Ee3O4 nanocomposite. <i>Polyhedron</i> , 2011 , 30, 419-426	2.7	45	
409	Magnetic Attributes of NiFeO Nanoparticles: Influence of Dysprosium Ions (Dy) Substitution. <i>Nanomaterials</i> , 2019 , 9,	5.4	44	
408	Effect of zinc substitution on magneto-optical properties of Mn1⊠ZnxFe2O4/SiO2 nanocomposites. <i>Ceramics International</i> , 2014 , 40, 13401-13408	5.1	44	
407	Synthesis of MnZnSmEuFeO Nanoparticles via the Hydrothermal Approach Induced Anti-Cancer and Anti-Bacterial Activities. <i>Nanomaterials</i> , 2019 , 9,	5.4	44	
406	Amperometric hydrogen peroxide biosensor based on cobalt ferritethitosan nanocomposite. <i>Materials Science and Engineering C</i> , 2012 , 32, 269-275	8.3	43	
405	Effect of temperature on magnetic properties of BaYxFe12⊠O19 hexaferrites. <i>Ceramics International</i> , 2016 , 42, 16296-16302	5.1	43	

A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. <i>Sensors and Actuators B: Chemical</i> , 2012 , 173, 396-405	8.5	42	
Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 471, 124-132	2.8	42	
Polyaniline (PANI)©00.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. <i>Ceramics International</i> , 2013 , 39, 5137-5143	5.1	41	
AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. <i>Journal of Alloys and Compounds</i> , 2020 , 812, 152150	5.7	41	
Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. <i>Results in Physics</i> , 2020 , 17, 103061	3.7	40	
Pulsar braking indices, glitches and energy dissipation in neutron stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 372, 489-496	4.3	40	
Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction. <i>Applied Surface Science</i> , 2016 , 363, 66-73	6.7	39	
Magneto-optical properties of Cu1⊠ZnxFe2O4 nanoparticles. <i>Superlattices and Microstructures</i> , 2014 , 74, 184-197	2.8	39	
Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M = Co, Ni, Cu, Mn and Zn) as hard/soft magnetic nanocomposites. <i>Journal of Magnetism and Magnetic Materials</i> , 2020 , 499, 166308	2.8	39	
Impact of La and Y ion substitutions on structural, magnetic and microwave properties of NiCuZnFeO nanospinel ferrites synthesized sonochemical route <i>RSC Advances</i> , 2019 , 9, 30671-30684	3.7	39	
Recyclable Fe3O4@Tween20@Ag Nanocatalyst for Catalytic Degradation of Azo Dyes. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 921-929	3.2	38	
Synthesis and characterization of poly(3-thiophene acetic acid)/Fe3O4 nanocomposite. <i>Polyhedron</i> , 2011 , 30, 1120-1126	2.7	38	
Synthesis, characterization and magneto optical properties of BaBi La Y Fe12BO19 (0.0MD.33) hexaferrites. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 416, 261-268	2.8	38	
Structural, magnetic, optical properties and cation distribution of nanosized CoZnTmFeO (0.0 lk lD.04) spinel ferrites synthesized by ultrasonic irradiation. <i>Ultrasonics Sonochemistry</i> , 2019 , 58, 104638	8.9	37	
Magneto Optical Properties of FeBxFe2NO4 Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 1111-1119	3.2	37	
Synthesis and characteristics of poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)He3O4 nanocomposite. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 8460-8468	5.7	37	
Preparation and characterization of polyaniline (PANI) Mn3O4 nanocomposite. <i>Physica B: Condensed Matter</i> , 2011 , 406, 1114-1120	2.8	37	
X-Ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545. <i>Astrophysical Journal</i> , 2002 , 569, 903	3- 2 9. 1/ 0	37	
	poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors and Actuators B: Chemical, 2012, 173, 396-405 Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. Journal of Magnetism and Magnetic Materials, 2019, 471, 124-132 Polyaniline (PANI)(Tool.SMn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceramics International, 2013, 39, 5137-5143 AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. Journal of Alloys and Compounds, 2020, 812, 152150 Investigation of structural and physical properties of Eu3+ ions substituted Nio.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results in Physics, 2020, 17, 103061 Pulsar braking indices, glitches and energy dissipation in neutron stars. Monthly Notices of the Royal Astronomical Society, 2006, 372, 489-496 Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction. Applied Surface Science, 2016, 363, 66-73 Magneto-optical properties of Cu18ZnxFe2O4 nanoparticles. Superlattices and Microstructures, 2014, 74, 184-197 Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M = Co, Ni, Cu, Mn and Zn) as hard/soft magnetic nanocomposites. Journal of Magnetism and Magnetic Materials, 2020, 499, 166308 Recyclable Fe3O4@Tween2O@Ag Nanocatalyst for Catalytic Degradation of Azo Dyes. Journal of NiCu2nFeO nanospinel ferrites synthesized sonochemical route RSC Advances, 2019, 9, 30671-30684 Recyclable Fe3O4@Tween2O@Ag Nanocatalyst for Catalytic Degradation of Azo Dyes. Journal of Inorganic and Organometallic Polymers and Magnetic Materials, 2015, 25, 921-929 Synthesis and characterization and magneto optical properties of BaBi La Y Fe12BO19 (0.08D.33) hexaferrites. Journal of Magnetism and Magnetic Materials, 2016, 416, 261-268 Structural, magnetic, optical properties and cation distribution of nanoszed CoznTmFeO (0.0 Ik 10.04) spinel ferrite	poly(qlycidyImethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors and Actuators B: Chemical, 2012, 173, 396-405 Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. Journal of Magnetism and Magnetic Materials, 2019, 471, 124-132 Polyaniline (PANI)II:00.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceramics International, 2013, 39, 5137-5143 AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. Journal of Alloys and Compounds, 2020, 812, 152150 Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results in Physics, 2020, 17, 103061 Pulsar braking indices, glitches and energy dissipation in neutron stars. Monthly Notices of the Royal Astronomical Society, 2006, 372, 489-496 Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction. Applied Surface Science, 2016, 363, 66-73 Magneto-optical properties of Cu19IZnxFe2O4 nanoparticles. Superlattices and Microstructures, 28 214, 74, 184-197 Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M = Co, Ni, Cu, Mn and Zn) as hard/soft magnetic nanocomposites. Journal of Magnetism and Magnetic Materials, 2004, 499, 166308 Impact of La and Y ion substitutions on structural, magnetic and microwave properties of NiCuZnFeO nanospinel ferrites synthesized sonochemical route. RSC Advances, 2019, 9, 30671-30684 Synthesis and characterization of poly(3-thiophene acetic acid)/Fe3O4 nanocomposite. Polyhedron, 27 Synthesis and characterization and magneto optical properties of BaBi La Y Fe12BO19 (0.080.33) hexaferrites. Journal of Magnetism and Magnetic Materials, 2016, 416, 261-268 Structural, magnetic, optical properties and cation distribution of nanosized CoZnTmFeO (0.0 & 10.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochemistry, 2019	poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors and Actuators B: Chemical, 2012, 173, 396-405 Microstructural and magnetic investigation of vanadium-substituted Si-nanohexaferrite. Journal of Magnetism and Magnetic Materials, 2019, 471, 124-132 Polyaniline (PAN)(Ilo0,5Mn0,5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceramics International, 2013, 39, 5137-5143 AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. Journal of July Synthesis and Compounds, 2020, 812, 152150 Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0,2Zn0.4Fe2O4 spinel Ferrite nanoparticles prepared via sonochemical approach. Results in Physics, 2020, 171, 103061 Pulsar braking indices, glitches and energy dissipation in neutron stars. Monthly Notices of the Royal Astronomical Society, 2006, 372, 489-496 Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction. Applied Surface Science, 2016, 363, 66-73 Magneto-optical properties of Cu 187nxFe2O4 nanoparticles. Superlattices and Microstructures, 2014, 74, 184-197 Enhancement on the exchange coupling behavior of SrC00.02Zr0.02Fe11.96019/MFe2O4 (M = Co, Ni, Cu, Mn and 2n) as hard/soft magnetic nanocomposites. Journal of Magnetism and Magnetic August 1970, 1

(2016-2016)

386	Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 412, 69-82	2.8	37
385	Electrochemical and magneto-optical properties of cobalt molybdate nano-catalyst as high-performance supercapacitor. <i>Ceramics International</i> , 2018 , 44, 17735-17742	5.1	37
384	Sr1-xLaxFe12O19 (0.0᠒0.5) hexaferrites: Synthesis, characterizations, hyperfine interactions and magneto-optical properties. <i>Ceramics International</i> , 2016 , 42, 12995-13003	5.1	36
383	Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. <i>Ceramics International</i> , 2016 , 42, 9065-9072	5.1	36
382	Synthesis of protoporphyrin coated superparamagnetic iron oxide nanoparticles via dopamine anchor. <i>Journal of Alloys and Compounds</i> , 2010 , 502, 439-444	5.7	36
381	Synthesis of Electrospun TiO Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. <i>Antibiotics</i> , 2020 , 9,	4.9	36
380	Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 1065-1071	3.2	36
379	Effect of Nb Substitution on the Structural, Magnetic, and Optical Properties of CoNiFeDD Nanoparticles. <i>Nanomaterials</i> , 2019 , 9,	5.4	35
378	Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. <i>Results in Physics</i> , 2019 , 13, 102166	3.7	35
377	Triethylene glycol stabilized MnFe2O4 nanoparticle: Synthesis, magnetic and electrical characterization. <i>Materials Research Bulletin</i> , 2013 , 48, 1057-1064	5.1	35
376	Synthesis and characterization of NiFe2O4Pd magnetically recyclable catalyst for hydrogenation reaction. <i>Materials Research Bulletin</i> , 2012 , 47, 4316-4321	5.1	35
375	Synthesis and characterization of polypyrrole B aFe12O19 nanocomposite. <i>Journal of Alloys and Compounds</i> , 2010 , 493, 481-485	5.7	35
374	Effects of polyglycolic acid and polypropylene meshes on postoperative adhesion formation in mice. <i>World Journal of Surgery</i> , 1997 , 21, 579-82; discussion 582-3	3.3	35
373	Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3BrTiO3 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 7786-7797	2.1	34
372	Ca2+ and Mg2+ incorporated barium hexaferrites: structural and magnetic properties. <i>Journal of Sol-Gel Science and Technology</i> , 2018 , 88, 628-638	2.3	34
371	Synthesis and Characterization of Antibacterial Activity of Spinel Chromium-Substituted Copper Ferrite Nanoparticles for Biomedical Application. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 2316-2327	3.2	33
370	Synthesis, characterization and catalytic activity of CoFe2O4-APTES-Pd magnetic recyclable catalyst. <i>Journal of Alloys and Compounds</i> , 2014 , 582, 201-207	5.7	33
369	Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells. <i>Applied Surface Science</i> , 2016 , 378, 572-581	6.7	33

368	Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). <i>Ecotoxicology and Environmental Safety</i> , 2020 , 194, 110377	7	32
367	Effect of Annealing Temperature on Magnetic and MBsbauer Properties of ZnFe2O4 Nanoparticles by Sol-gel Approach. <i>Journal of Superconductivity and Novel Magnetism</i> , 2018 , 31, 3347-3	3 5 &	32
366	Synthesis and characterization of poly(3-thiophenyl acetic acid) (P3TAA) B aFe12O19 nanocomposite. <i>Polyhedron</i> , 2011 , 30, 1349-1359	2.7	32
365	Magneto-optical properties BaBixLaxFe120xO19 (0.000.5) hexaferrites. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 409, 92-98	2.8	32
364	Magneto-optical properties of BaCryFe12[IO19 (0.0 [I] [I].0) hexaferrites. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 451, 463-472	2.8	32
363	AC susceptibility study of Cu substituted BaFe12O19 nanohexaferrites. <i>Ceramics International</i> , 2018 , 44, 13097-13105	5.1	31
362	Magnetic and Optical Properties of Mn1\(\mathbb{\text{Z}}\)TxFe2O4 Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 729-736	3.2	31
361	Synthesis and Characterization of Catalytically Activity Fe3o4B-Aminopropyl-triethoxysilane/Pd Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 409-417	3.2	31
360	Enhanced Magneto-optical and Photocatalytic Properties of Ferromagnetic Mg1 NiyFe2O4 (0.0	1.5	30
359	Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs. <i>Materials Research Bulletin</i> , 2012 , 47, 537-543	5.1	30
358	AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites. <i>Ceramics International</i> , 2018 , 44, 17749-17758	5.1	30
357	Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 9143-9154	2.1	29
356	Synthesis of Dy-Y co-substituted manganese-zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: Comparison between sonochemical and sol-gel auto-combustion methods. <i>Materials Science and Engineering C</i> , 2020 , 116, 111186	8.3	29
355	Synthesis and characterization of monodisperse NiFe2O4 nanoparticles. <i>Ceramics International</i> , 2016 , 42, 7987-7992	5.1	29
354	Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles. <i>Journal of Molecular Structure</i> , 2013 , 1037, 361-366	3.4	29
353	Effect of ionic liquids on the electrical and magnetic performance of polyanilinelickel ferrite nanocomposite. <i>Materials Research Bulletin</i> , 2013 , 48, 378-382	5.1	29
352	Hydrothermal Synthesis of SrFe12O19 and Its Characterization. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 2081-2085	1.5	29
351	Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite. <i>Nano-Micro Letters</i> , 2011 , 3, 91-98	19.5	29

350	Expectancy of large pulsar glitches: a comparison of models with the observed glitch sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 1994 , 269, 849-856	4.3	29	
349	The impact of Zr substituted Sr hexaferrite: Investigation on structure, optic and magnetic properties. <i>Results in Physics</i> , 2019 , 13, 102244	3.7	28	
348	Synthesis and Characterization of CoxZn1MAlFeO4 Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 747-754	3.2	28	
347	MnFe2O4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants. <i>Journal of Materials Science and Technology</i> , 2016 , 32, 134-141	9.1	28	
346	Pb substituted Ba,Sr-hexaferrite nanoparticles as high quality microwave absorbers. <i>Ceramics International</i> , 2017 , 43, 14023-14030	5.1	28	
345	Synthesis and Characterization of Dendrimer-Encapsulated Iron and Iron-Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1541-1549	1.5	28	
344	Effect of Nb3+ ion substitution on the magnetic properties of SrFe12O19 hexaferrites. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 11181-11192	2.1	27	
343	Developing the magnetic, dielectric and anticandidal characteristics of SrFe12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x hard/soft ferrite nanocomposites. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 113, 344-362	5.3	27	
342	Dielectric properties, cationic distribution calculation and hyperfine interactions of La3+ and Bi3+ doped strontium hexaferrites. <i>Ceramics International</i> , 2016 , 42, 9100-9115	5.1	27	
341	Negative Permittivity of Polyaniline E e3O4 Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 306-314	3.2	27	
340	Effect of Hydrolyzing Agents on the Properties of Poly (Ethylene Glycol)-Fe3O4 Nanocomposite. <i>Nano-Micro Letters</i> , 2011 , 3, 79-85	19.5	27	
339	Magnetic and dielectric characterization of alginic acid E e3O4 nanocomposite. <i>Polyhedron</i> , 2011 , 30, 322-328	2.7	27	
338	CTAB-Mn3O4 nanocomposites: Synthesis, NMR and low temperature EPR studies. <i>Polyhedron</i> , 2010 , 29, 1375-1380	2.7	27	
337	Functional SrBaSmFeO/(NiZnFeO) Hard-Soft Ferrite Nanocomposites: Structure, Magnetic and Microwave Properties. <i>Nanomaterials</i> , 2020 , 10,	5.4	26	
336	Magnetic, electrical and microwave properties of MnIIo substituted Ni x Zn 0,8-x Fe 2 O 4 nanoparticles. <i>Journal of Alloys and Compounds</i> , 2016 , 660, 324-335	5.7	26	
335	Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. <i>Ceramics International</i> , 2019 , 45, 22538-22546	5.1	26	
334	Solvothermal Synthesis of Pure SrFe12O19 Hexaferrite Nanoplatelets. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 877-880	1.5	26	
333	Facile synthesis of PVAMnFe2O4 nanocomposite: Its magnetic investigation. <i>Materials Research Bulletin</i> , 2013 , 48, 4066-4071	5.1	26	

332	Preparation of high quality, single domain BaFe12O19 particles by the citrate soldel combustion route with an initial Fe/Ba molar ratio of 4. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2012 , 177, 949-955	3.1	26
331	Low-temperature synthesis of single-domain Sr-hexaferrite particles by solid-state reaction route. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 2002-2013	1.6	26
330	Synthesis, dielectric and magnetic characteristics of poly(1-vinyl-1,2,4-triazole) (PVTri)Barium hexaferrite composite. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 8199-8206	5.7	26
329	Ovalbumin mediated synthesis of Mn3O4. <i>Polyhedron</i> , 2009 , 28, 2119-2122	2.7	26
328	Dipping Activity in the X-Ray Pulsar 4U 1907+09. Astrophysical Journal, 1997, 479, L47-L50	4.7	26
327	Timing studies on RXTE observations of SAX J2103.5+4545. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 1108-1114	4.3	26
326	Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): A comparative study. <i>Plant Physiology and Biochemistry</i> , 2019 , 139, 56-65	5.4	25
325	A Fe3O4@Nico@Ag nanocatalyst for the hydrogenation of nitroaromatics. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 705-711	11.3	25
324	Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 7403-7417	5.9	25
323	Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic effect on degradation of some pharmaceutical antibiotics. <i>Applied Surface Science</i> , 2014 , 317, 914-922	6.7	25
322	Solgel auto-combustion synthesis of PVP/CoFe2O4 nanocomposite and its magnetic characterization. <i>Materials Research Bulletin</i> , 2013 , 48, 4889-4895	5.1	25
321	Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl-malonic acid)/Fe3O4 nanocomposite. <i>Journal of Alloys and Compounds</i> , 2012 , 514, 45-53	5.7	25
320	InorganicBrganic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 1425-1432	8.9	25
319	Proton conduction in adipic acid/benzimidazole hybrid electrolytes. <i>Physica B: Condensed Matter</i> , 2005 , 364, 279-284	2.8	25
318	Microwave, dielectric and magnetic properties of Mg-Ti substituted Ni-Zn ferrite nanoparticles. <i>Ceramics International</i> , 2016 , 42, 17317-17331	5.1	25
317	Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: Cation distribution, structural and electrical properties. <i>Superlattices and Microstructures</i> , 2015 , 85, 747-760	2.8	24
316	Preparation and characterization of SPION functionalized via caffeic acid. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 395, 199-204	2.8	24
315	Tailored microstructures, optical and magnetic qualities of strontium hexaferrites: Consequence of Tm3+ and Tb3+ ions Co-substitution. <i>Ceramics International</i> , 2019 , 45, 21385-21394	5.1	24

(2007-2014)

314	Green Chemical Synthesis of Silver Nanoparticles and its Catalytic Activity. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 401-406	3.2	24
313	Magneto-optical properties of SrBixLaxFe12-2xO19 (0.0⊠0.5) hexaferrites by sol-gel auto-combustion technique. <i>Ceramics International</i> , 2017 , 43, 1298-1303	5.1	24
312	Effect of Zn Substitution on Electrical Properties of Nanocrystalline Cobalt Ferrite. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 469-479	1.5	24
311	Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite. <i>Nano-Micro Letters</i> , 2011 , 3, 25-33	19.5	24
310	Synthesis and NMR studies of the polymer membranes based on poly(4-vinylbenzylboronic acid) and phosphoric acid. <i>Polymer</i> , 2008 , 49, 3859-3864	3.9	24
309	Magneto Optical Properties and Hyperfine Interactions of Cr3+ Ion Substituted Copper Ferrite Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 2533-2544	3.2	24
308	Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. Journal of Molecular Structure, 2019 , 1195, 269-279	3.4	23
307	Synthesis, conductivity and magnetic properties of poly(N-pyrrole phosphonic acid) H e3O4 nanocomposite. <i>Materials Chemistry and Physics</i> , 2011 , 131, 284-291	4.4	23
306	Discovery of a Soft Spectral Component and Transient 22.7 Second Quasi-periodic Oscillations of SAX J2103.5+4545. <i>Astrophysical Journal</i> , 2004 , 616, 463-468	4.7	23
305	The timing noise of PSR 0823+26, 1706-16, 1749-28, 2021+51 and the anomalous braking indices. <i>Monthly Notices of the Royal Astronomical Society</i> , 1999 , 306, 207-212	4.3	23
304	Uptake, translocation, and physiological effects of hematite (FeO) nanoparticles in barley (Hordeum vulgare L.). <i>Environmental Pollution</i> , 2020 , 266, 115391	9.3	23
303	Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites. <i>Ceramics International</i> , 2020 , 46, 4610-4618	5.1	23
302	Structural and Magnetic Properties of CoNiGaGdFeO/ZnFeO Spinel Ferrite Nanocomposites: Comparative Study between Sol-Gel and Pulsed Laser Ablation in Liquid Approaches. <i>Nanomaterials</i> , 2021 , 11,	5.4	23
301	Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 1280-1286	11.3	22
300	Synthesis and Characterization of High Catalytic Activity Magnetic Fe3O4 Supported Pd Nanocatalyst. <i>Journal of Superconductivity and Novel Magnetism</i> , 2013 , 26, 165-171	1.5	22
299	Cefditorene-Mediated Synthesis of Silver Nanoparticles and Its Catalytic Activity. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 970-975	3.2	22
298	Synthesis, structural, magnetic and electrical properties of Co1⊠ZnxFe2O4 (x = 0.0, 0.2) nanoparticles. <i>Materials Research Bulletin</i> , 2013 , 48, 646-654	5.1	22
297	Low temperature synthesis and characterization of Mn3O4 nanoparticles. <i>Open Chemistry</i> , 2007 , 5, 169-	-1:766	22

296	An investigation of the proton conductivities of hydrated poly(vinyl alcohol)/boric acid complex electrolytes. <i>Ionics</i> , 2007 , 13, 263-266	2.7	22
295	X-ray powder diffraction and IR study of NaMg(H2O)2[BP2O8][H2O and NH4Mg(H2O)2[BP2O8][H2O. <i>Journal of Materials Science</i> , 2000 , 35, 4621-4626	4.3	22
294	Exchange-coupling effect in hard/soft SrTb0.01Tm0.01Fe11.98O19/AFe2O4 (where A = Co, Ni, Zn, Cu and Mn) composites. <i>Ceramics International</i> , 2020 , 46, 7089-7098	5.1	22
293	Influence of TmII b substitution on magnetic and optical properties of BaII r hexaferrites prepared by ultrasonic assisted citrate sol-gel approach. <i>Materials Chemistry and Physics</i> , 2020 , 253, 123324	4.4	21
292	Synthesis of NiCoCdFeNdO (x 🛈 .25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 3186-	3193	21
291	CoFe2O4Pd (0) Nanocomposite: Magnetically Recyclable Catalyst. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 2041-2047	1.5	21
290	Magnetic properties and M\(\text{S}\)sbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites. Ceramics International, 2017 , 43, 15486-15492	5.1	21
289	Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 421, 462-471	2.8	21
288	Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles. <i>Turkish Journal of Chemistry</i> , 2014 , 38, 765-774	1	21
287	Solgel auto combustion synthesis of CoFe2O4/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization. <i>Materials Research Bulletin</i> , 2013 , 48, 3247-3253	5.1	21
286	Synthesis of Strontium Borophosphate, SrBPO5 by Solid State and Hydrothermal Methods and Characterisation. <i>Crystal Research and Technology</i> , 2000 , 35, 247-254	1.3	21
285	Melatonin modulates mesenteric blood flow and TNFalpha concentrations after lipopolysaccharide challenge. <i>The European Journal of Surgery</i> , 2000 , 166, 722-7		21
284	Sonochemical synthesis of Dy substituted MnZnFeO nanoparticles: Structural, magnetic and optical characterizations. <i>Ultrasonics Sonochemistry</i> , 2020 , 61, 104836	8.9	21
283	Synthesis and characterization of oleylamine capped MnxFe1-xFe2O4 nanocomposite: Magneto-optical properties, cation distribution and hyperfine interactions. <i>Journal of Alloys and Compounds</i> , 2016 , 688, 675-686	5.7	21
282	Electrical and dielectric properties of Nb3+ ions substituted Ba-hexaferrites. <i>Results in Physics</i> , 2019 , 14, 102468	3.7	20
281	Magnetic and Catalytic Properties of Cu x Fe1⊠ Fe2O4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 2447-2454	1.5	20
280	Exchange-coupling behavior in SrTb0.01Tm0.01Fe11.98O19/(CoFe2O4)x hard/soft nanocomposites. <i>New Journal of Chemistry</i> , 2020 , 44, 5800-5808	3.6	20
279	Microwave properties of BaFe11Mg2+0.25X2+0.25Ti4+0.25O19 (X2+=Cu, Mn, Zn, Ni and Co) nanoparticles in 0₫6.5 GHz range. <i>Ceramics International</i> , 2016 , 42, 2611-2625	5.1	20

(2021-2013)

278	Multiwall-carbon nanotube/cobalt ferrite hybrid: Synthesis, magnetic and conductivity characterization. <i>Current Applied Physics</i> , 2013 , 13, 1404-1412	2.6	20	
277	Potentiometric urea biosensor based on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles. <i>Current Applied Physics</i> , 2013 , 13, 280-286	2.6	20	
276	Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles. <i>Materials Research Bulletin</i> , 2013 , 48, 1296-1303	5.1	20	
275	Triethylene Glycol Stabilized CoFe2O4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 1879-1892	1.5	20	
274	Distribution of aortic mechanical prosthetic valve closure sound model parameters on the surface of the chest. <i>IEEE Transactions on Biomedical Engineering</i> , 1995 , 42, 358-70	5	20	
273	Pulse Arrival Time Glitches in GRO J174428. <i>Astrophysical Journal</i> , 1996 , 470, L109-L112	4.7	20	
272	Synthesis and biological characterization of MnZnEuDyFeO nanoparticles by sonochemical approach. <i>Materials Science and Engineering C</i> , 2020 , 109, 110534	8.3	20	
271	AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites. <i>Ceramics International</i> , 2019 , 45, 10048-10055	5.1	20	
270	Flux pinning properties of YBCO added by WO3 nanoparticles. <i>Journal of Alloys and Compounds</i> , 2019 , 810, 151884	5.7	19	
269	Effect of bimetallic (Ni and Co) substitution on magnetic properties of MnFe2O4 nanoparticles. <i>Ceramics International</i> , 2016 , 42, 13773-13782	5.1	19	
268	Maxwell-Wagner relaxation in grain boundary of BaBixLaxYxFe12BxO19 (0.0 © 0.0 0.33) hexaferrites. <i>Composites Part B: Engineering</i> , 2016 , 99, 248-256	10	19	
267	Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles. <i>Superlattices and Microstructures</i> , 2015 , 88, 450-466	2.8	19	
266	Synthesis and characterization of poly(1-vinyltriazole)-grafted superparamagnetic iron oxide nanoparticles. <i>Synthetic Metals</i> , 2012 , 162, 590-597	3.6	19	
265	A green chemical route for the synthesis of Mn3O4 nanoparticles. <i>Open Chemistry</i> , 2009 , 7, 555-559	1.6	19	
264	A study on the spectral, microstructural, and magnetic properties of Eu-Nd double-substituted BaSrFeO hexaferrites synthesized by an ultrasonic-assisted approach. <i>Ultrasonics Sonochemistry</i> , 2020 , 62, 104847	8.9	19	
263	Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties. <i>Arabian Journal of Chemistry</i> , 2021 , 14, 1029	9 2 .9	19	
262	Synthesis and characterization of Co1½Ni Mn Ce Fe2Ď4 nanoparticles. <i>Journal of Rare Earths</i> , 2020 , 38, 188-194	3.7	19	
261	Impact of nickel substitution on structure, magneto-optical, electrical and acoustical properties of cobalt ferrite nanoparticles. <i>Journal of Alloys and Compounds</i> , 2021 , 857, 157517	5.7	19	

260	Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@Fe3O4 nanocomposite. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2020 , 124, 11429	13	18
259	The Conductivity and Dielectric Properties of Neobium Substituted Sr-Hexaferrites. <i>Nanomaterials</i> , 2019 , 9,	5.4	18
258	Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). <i>Ecotoxicology and Environmental Safety</i> , 2019 , 186, 109751	7	18
257	RXTE timing analysis of the anomalous X-ray pulsar 1E 2259+586. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 3109-3114	4.3	18
256	Effect of conducting polymer layer on microwave absorption properties of BaFe12O19?TiO2 composite. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 395-402	1.6	18
255	Comparative study of sonochemically synthesized Co-Zr and Ni-Zr substituted Sr-hexaferrites: Magnetic and structural investigations. <i>Journal of Magnetism and Magnetic Materials</i> , 2020 , 497, 16599.	6 ^{2.8}	18
254	Evaluation of CuMgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. Journal of Physics and Chemistry of Solids, 2021, 153, 110010	3.9	18
253	Nd3+ Ion-Substituted Co1½xNixMnxFe2¼NdyO4 Nanoparticles: Structural, Morphological, and Magnetic Investigations. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2019 , 29, 783-	7 3 °7	18
252	Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. <i>Physica B: Condensed Matter</i> , 2021 , 606, 412660	2.8	18
251	Features of structure, magnetic state and electrodynamic performance of SrFeInO. <i>Scientific Reports</i> , 2021 , 11, 18342	4.9	18
250	Ce-Y co-substituted strontium nanohexaferrites: AC susceptibility and Mossbauer studies. <i>Ceramics International</i> , 2018 , 44, 12520-12527	5.1	17
249	Tb3+ ion substituted Sr-hexaferrites as high quality microwave absorbers. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 491, 165595	2.8	17
248	Recyclable NiFe2O4APTES/Pd Magnetic Nanocatalyst. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 937-943	3.2	17
247	Synthesis and characterization of polypropiolate sodium (PPNa)He3O4 nanocomposite. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 8825-8831	5.7	17
246	The Effect of Condensation on the Morphology and Magnetic Properties of Modified Barium Hexaferrite (BaFe12O19). <i>Nano-Micro Letters</i> , 2011 , 3, 108-114	19.5	17
245	Synthesis and characterization of poly(1-vinyl-1,2,4-triazole) (PVTri)Barium hexaferrite nanocomposite. <i>Physica B: Condensed Matter</i> , 2011 , 406, 2298-2302	2.8	17
244	2-pyrrolidone - capped Mn3O4 nanocrystals. <i>Open Chemistry</i> , 2008 , 6, 465-469	1.6	17
243	The steady spin-down rate of 4U 1907+09. <i>Monthly Notices of the Royal Astronomical Society</i> , 2001 , 327, 1269-1272	4.3	17

(2020-2019)

242	Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. <i>Environmental Nanotechnology, Monitoring and Management</i> , 2019 , 11, 100223	3.3	16	
241	Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. <i>Scientia Horticulturae</i> , 2020 , 265, 109223	4.1	16	
240	Photocatalytic Degradation of Azo Dyes and Organic Contaminants in Wastewater Using Magnetically Recyclable Fe3O4@UA-Cu Nano-catalyst. <i>Catalysis Letters</i> , 2018 , 148, 1130-1141	2.8	16	
239	Conductivity and dielectric properties of SrLaxBixYxFe12BxO19 (0.0MD.33) hexaferrites. <i>Ceramics International</i> , 2016 , 42, 11780-11795	5.1	16	
238	Electrical properties of La3+ and Y3+ ions substituted Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites. <i>Results in Physics</i> , 2019 , 15, 102755	3.7	16	
237	Solvothermal Synthesis of SrFe12O19 Hexaferrites: Without Calcinations. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 1593-1598	1.5	16	
236	Simple hydrothermal synthesis of Fe3O4-PEG nanocomposite. <i>Open Chemistry</i> , 2013 , 11, 1527-1532	1.6	16	
235	Magneto-optical properties and MBsbauer Investigation of BaxSryPbzFe12O19 Hexaferrites. <i>Ceramics International</i> , 2017 , 43, 3475-3482	5.1	16	
234	Synthesis and Characterization of PEG-Sr Hexaferrite by Sol L el Conversion. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 2003-2008	1.5	16	
233	ROTSE Observations of the Young Cluster IC 348. Astronomical Journal, 2005, 130, 2766-2777	4.9	16	
232	Bactericidal and In Vitro Cytotoxicity of Seed Extract and Its Elemental Analysis Using Laser-Induced Breakdown Spectroscopy. <i>Pharmaceuticals</i> , 2020 , 13,	5.2	16	
231	Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. <i>Nano Structures Nano Objects</i> , 2021 , 26, 100	7 2 8	16	
230	Enhanced Magneto-optical and Antibacterial Studies of Bi1\(\text{M} MgxFeO3 (0.0 \text{ \text{\$\mathbb{L}\$}}\) (0.15)) Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2019 , 32, 1663-1670	1.5	16	
229	Cr3+-substituted Ba nanohexaferrites as high-quality microwave absorber in X band. <i>Journal of Alloys and Compounds</i> , 2019 , 779, 420-426	5.7	16	
228	Exploration of catalytic and cytotoxicity activities of CaMgNiFeO nanoparticles. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2019 , 196, 111506	6.7	15	
227	Impact of Tm and Tb Rare Earth Cations Substitution on the Structure and Magnetic Parameters of Co-Ni Nanospinel Ferrite. <i>Nanomaterials</i> , 2020 , 10,	5.4	15	
226	Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 34311-34321	5.1	15	
225	Impacts of Sol-Gel Auto-Combustion and Ultrasonication Approaches on Structural, Magnetic, and Optical Properties of Sm-Tm co-Substituted SrBaFeO Nanohexaferrites: Comparative study. Nanomaterials 2020, 10	5.4	15	

224	A comprehensive study of RXTE and INTEGRAL observations of the X-ray pulsar 4U 1907+09. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2079-2087	4.3	15
223	Synthesis and conductivity studies of piperidine-4-carboxylic acid functionalized Fe3O4 nanoparticles. <i>Materials Research Bulletin</i> , 2012 , 47, 2193-2199	5.1	15
222	Effect of Fuel on the Synthesis and Properties of Poly(methyl methacrylate) Modified SrFe12O19 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 1957-1963	1.5	15
221	Fabrication and characterization of dendrimer-encapsulated monometallic Co nanoparticles. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 5341-5348	5.7	15
220	Solid-State Synthesis, X-ray Powder Investigation and IR Study of EMg3[BPO7]. <i>Journal of the European Ceramic Society</i> , 1998 , 18, 2241-2246	6	15
219	Investigation of Microstructural and Magnetic Properties of BaVxFe12NO19 Nanohexaferrites. Journal of Superconductivity and Novel Magnetism, 2019 , 32, 1437-1445	1.5	15
218	Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by solgel approach. <i>Journal of Sol-Gel Science and Technology</i> , 2020 , 95, 202-210	2.3	15
217	Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites. <i>Journal of Superconductivity and Novel Magnetism</i> , 2017 , 30, 1813-1826	1.5	14
216	Structure, MBsbauer and AC susceptibility of strontium nanohexaferrites: Effect of vanadium ions doping. <i>Ceramics International</i> , 2019 , 45, 11615-11624	5.1	14
215	Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites. <i>Journal of Solid State Chemistry</i> , 2020 , 286, 121310	3.3	14
214	Structural and Magnetic Properties of Triethylene Glycol Stabilized Monodisperse Fe3O4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 2415-2420	1.5	14
213	Sonochemical synthesis and chracterization of Mn3O4 nanoparticles. <i>Open Chemistry</i> , 2010 , 8, 633-638	1.6	14
212	Effect of Nd-Y co-substitution on structural, magnetic, optical and microwave properties of NiCuZn nanospinel ferrites. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 11278-11290	5.5	14
211	Microstructure, dielectric and microwave features of [Ni0.4Cu0.2Zn0.4](Fe2IIb)O4 (xID.1) nanospinel ferrites. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 10608-10623	5.5	14
210	Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. <i>Ceramics International</i> , 2016 , 42, 13350-13358	5.1	14
209	Electrical and optical properties of NiOI5Co0.5-xCdxNd0.02Fe1I78O4 (x ID.25) spinel ferrite nanofibers. <i>Ceramics International</i> , 2020 , 46, 24605-24614	5.1	13
208	Solgel auto combustion synthesis of CoFe2O4/1-methyl-2-pyrrolidone nanocomposite: Its magnetic characterization. <i>Ceramics International</i> , 2013 , 39, 6407-6413	5.1	13
207	A Green Chemical Synthesis and Characterization of Mn3O4 nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 1535-1539	1.5	13

(2021-2009)

206	Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization. <i>Open Chemistry</i> , 2009 , 7, 410-414	1.6	13	
205	X-ray spectral evolution of Her X-1 in a low state and the following short high state. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 361, 1393-1398	4.3	13	
204	Short-term pulse frequency fluctuations of OAO 1657-415 from RXTE observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2000 , 313, 637-640	4.3	13	
203	An experimental study of the adhesive potential of different meshes. <i>The European Journal of Surgery</i> , 2000 , 166, 490-4		13	
202	Investigation of Structural and Magnetic Properties on Mg1\(\text{NZ}\) TxFe2\(\text{NA}\) AlxO4 (0.0 \(\text{Ib}\) .8) Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018 , 28, 942-953	3.2	13	
201	Synthesis and Structural and Magnetic Characterization of BaZn x Fe12⊠ O19 Hexaferrite: Hyperfine Interactions. <i>Journal of Superconductivity and Novel Magnetism</i> , 2017 , 30, 1585-1592	1.5	12	
200	Fe3O4@Hpipe-4@Cu Nanocatalyst for Hydrogenation of Nitro-Aromatics and Azo Dyes. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 1120-1128	3.2	12	
199	Microwave Assisted Synthesis and Characterization of CoxZn1\(\mathbb{Q}\)Cr0.5Fe0.5O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2015 , 25, 619-626	3.2	12	
198	Evidence of a change in the long-term spin-down rate of the X-ray pulsar 4U 1907+09. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 369, 1760-1764	4.3	12	
197	Customized magnetic properties of (Mn0.5Zn0.5)[EuxNdxFe2-2x]O4 nanospinel ferrites synthesized via ultrasonic irradiation approach. <i>Results in Physics</i> , 2020 , 19, 103350	3.7	12	
196	Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. <i>Ceramics International</i> , 2021 , 47, 10512-10535	5.1	12	
195	Influence of Dy Ions on the Microstructures and Magnetic, Electrical, and Microwave Properties of [NiCuZn](Fe Dy)O (0.00 II 0.04) Spinel Ferrites. <i>ACS Omega</i> , 2021 , 6, 10266-10280	3.9	12	
194	(BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: Structure, morphology, magnetic and dielectric properties. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 5648-5658	3.8	12	
193	Synthesis, Characterization, and Dielectric Properties of BaFe10(Mn2+Zn2+Zn2+)O19 Hexaferrite. Journal of Superconductivity and Novel Magnetism, 2016 , 29, 199-205	1.5	12	
192	Tb3+ substituted strontium hexaferrites: Structural, magnetic and optical investigation and cation distribution. <i>Journal of Rare Earths</i> , 2020 , 38, 402-410	3.7	12	
191	Exploring the influence of varying pH on structural, electro-optical, magnetic and photo-Fenton properties of mesoporous ZnFeO nanocrystals. <i>Environmental Pollution</i> , 2021 , 272, 115983	9.3	12	
190	Investigation of AC susceptibility, dielectric and electrical properties of TbIIm co-substituted M-type Sr hexaferrites. <i>Materials Chemistry and Physics</i> , 2021 , 260, 124162	4.4	12	
189	Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. <i>Arabian Journal of Chemistry</i> , 2021 , 14, 103261	5.9	12	

188	Tuning the Structure, Magnetic, and High Frequency Properties of Sc-Doped Sr 0.5 Ba 0.5 Sc x Fe 12- x O 19 /NiFe 2 O 4 Hard/Soft Nanocomposites. <i>Advanced Electronic Materials</i> , 2022 , 8, 2101124	6.4	12
187	Sonochemical Synthesis of CoFe2-xNdxO4 Nanoparticles: Structural, Optical, and Magnetic Investigation. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 3837-3844	1.5	11
186	Fe3O4@Tween20@Ag Magnetically Recyclable Nanocatalyst for Various Hydrogenation Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2015 , 25, 657-663	3.2	11
185	Influence of calcination rate on morphologies and magnetic properties of MnFe2O4 nanofibers. <i>Ceramics International</i> , 2016 , 42, 18189-18195	5.1	11
184	AC susceptibility, DC magnetization and superconducting properties of tungsten oxide nanowires added YBa2Cu3Oy. <i>Ceramics International</i> , 2019 , 45, 21864-21869	5.1	11
183	Green synthesis of Fe\$_{3}\$O\$_{4}\$ nanoparticles by one-pot saccharide-assisted hydrothermal method. <i>Turkish Journal of Chemistry</i> , 2014 , 38, 825-836	1	11
182	Poly(vinyl phosphonic acid) (PVPA) B aFe12O19 Nanocomposite. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 1185-1193	1.5	11
181	Timing and X-ray spectral features of Swift J1626.68156. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1523-1526	4.3	11
180	Analysis of RXTE-PCA Observations of SMC X-1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 378-386	4.3	11
179	Proton conductivity survey of the acid doped copolymers based on 4-vinylbenzylboronic acid and 4(5)-vinylimidazole. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2009 , 47, 1267-1274	2.6	11
178	Measurements of isomeric cross sections for (n,2n) reaction on 140Ce, 142Nd and 144Sm isotopes around 14 MeV. <i>Annals of Nuclear Energy</i> , 2003 , 30, 1539-1547	1.7	11
177	Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode. <i>Journal of Energy Storage</i> , 2020 , 32, 101671	7.8	11
176	Structural, fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (rGO)/zirconium substituted cobalt ferrite (CoOI\(\textit{Z}\)ro\(\textit{F}\)Fe2O4) nanocomposites. <i>Physica B: Condensed Matter</i> , 2021 , 605, 412784	2.8	11
175	Enhanced antibacterial performance of Fe3O4Ag and MnFe2O4Ag nanocomposites. <i>Bulletin of Materials Science</i> , 2017 , 40, 147-155	1.7	10
174	Magnetic properties and hyperfine interactions of Co1-2xNixMnxFe2O4 nanoparticles. <i>Ceramics International</i> , 2017 , 43, 4746-4752	5.1	10
173	Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor. <i>Journal of Electronic Materials</i> , 2018 , 47, 2198-2208	1.9	10
172	Magneto-optical investigation and hyperfine interactions of copper substituted Fe3O4 nanoparticles. <i>Ceramics International</i> , 2016 , 42, 5650-5658	5.1	10
171	SrFe12O19/Zn0.65Ni0.25Cu0.1Fe2O4 CoreBhell Nanocomposite: Synthesis, Chracterization and Catalytic Activity in Aqueous Solution. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> 2014, 24, 732, 738	3.2	10

170	Reversible immobilization of BSA on Cu-chelated PAMAM dendrimer modified iron oxide nanoparticles. <i>Applied Surface Science</i> , 2014 , 314, 697-703	6.7	10
169	Electrical Properties of Triethylene Glycol Stabilized MnxCo1-xFe2O4 Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 690-702	3.2	10
168	Synthesis, Electrical and Magnetic Characterization of Polyacrylamide Hydrogels Including NiFe2O4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2013 , 26, 213-218	1.5	10
167	Discovery of a glitch in the accretion-powered pulsar SXP 1062. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4982-4989	4.3	10
166	A simple approach for the synthesis of Co3O4 nanocrystals. <i>Inorganic Materials</i> , 2011 , 47, 426-430	0.9	10
165	Recent torque reversal of 4U 1907+09. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 1015-1020	4.3	10
164	THE ORBITAL PERIOD OF SWIFT J1626.68156. Astrophysical Journal, 2010, 711, 1306-1309	4.7	10
163	Benzimidazole tethered proton conducting organic electrolytes. <i>Materials Chemistry and Physics</i> , 2007 , 105, 240-244	4.4	10
162	Recent timing studies on RXTE observations of 4U 1538-52. Astronomy and Astrophysics, 2006 , 453, 10	37 <u>5</u> 1104	0 10
161	Viewing the Emphasis on State-of-the-Art Magnetic Nanoparticles: Synthesis, Physical Properties, and Applications in Cancer Theranostics. <i>Current Pharmaceutical Design</i> , 2019 , 25, 1505-1523	3.3	10
160	Dimensionality and superconducting parameters of YBa2Cu3O7d/(WO3 NPs)x composites deduced from excess conductivity analysis. <i>Materials Chemistry and Physics</i> , 2020 , 243, 122665	4.4	10
159	Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites. <i>Journal of Superconductivity and Novel Magnetism</i> , 2021 , 34, 995-1018	1.5	10
158	Polysubstituted High-Entropy [LaNd](CrMnFeCoNi)O Perovskites: Correlation of the Electrical and Magnetic Properties. <i>Nanomaterials</i> , 2021 , 11,	5.4	10
157	Synthesis, characterization and magnetic investigation of Er-substituted electrospun NiFe2O4 nanofibers. <i>Physica Scripta</i> , 2020 , 95, 075801	2.6	10
156	MnCrxFe2NO4 Nanoparticles: Magnetic and Microwave Absorption Properties. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 134-141	3.2	9
155	Structural and Magnetic Properties of NiCr x Fe2N O4 Nanoparticles Synthesized via Microwave Method. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 3405-3410	1.5	9
154	Investigation of the crystal/magnetic structure, magnetic and optical properties of SrYxNbxFe12🛘xO19 (x 🛈.05) hexaferrites. <i>Physica Scripta</i> , 2020 , 95, 055802	2.6	9
153	Concentration and temperature-dependent magnetic properties of Ba1\(\mathbb{Z}\)TxFe12O19 hexaferrites. Ceramics International, 2018, 44, 988-992	5.1	9

152	Magnetic and spectroscopic properties of Polyacrylamide-CoFe2O4 magnetic hydrogel. <i>Journal of Molecular Structure</i> , 2013 , 1036, 386-391	3.4	9
151	The Large Observatory for x-ray timing 2014 ,		9
150	Hydrothermal Synthesis and Characterization of PEG Stabilized Co3O4 nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 2403-2406	1.5	9
149	Synthesis and magnetic properties of a porphine-based photosynthesizer with magnetic nano-carriers. <i>Polyhedron</i> , 2011 , 30, 2843-2848	2.7	9
148	Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd0.2Fe1.8O4 Magnetic Nanoparticle Treatment. <i>Journal of Soil Science and Plant Nutrition</i> , 2020 , 20, 357-366	3.2	9
147	Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. <i>Journal of Rare Earths</i> , 2020 , 38, 1103-1113	3.7	9
146	Synthesis of niobium substituted cobalt-nickel nano-ferrite (CoNiNbFeO (x ID.1) by hydrothermal approach show strong anti-colon cancer activities. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 2257-2265	3.6	9
145	Temperature and Frequency Dependence on Electrical Properties of Fe3O4@ Caffeic Acid Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 190-196	3.2	8
144	Magnetic and Microwave Absorption Properties of Ni x Zn0.9 Mn0.1Fe2 O 4 Prepared by Boron Addition. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 1047-1050	1.5	8
143	MBsbauer Analysis and Cation Distribution of Zn Substituted BaFe12O19 Hexaferrites. <i>Journal of Superconductivity and Novel Magnetism</i> , 2018 , 31, 151-156	1.5	8
142	Synthesis and Characterization of Multiwall-Carbon Nanotubes Decorated with Nickel Ferrite Hybrid. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 489-498	3.2	8
141	M-hexaferriteAPTES/Pd(0) Magnetically Recyclable Nano Catalysts (MRCs). <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 1274-1281	3.2	8
140	The Electrical Properties of Polyaniline (PANI)©00.5Mn0.5Fe2O4 Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 1089-1096	3.2	8
139	Microwave Absorption Properties of BaFe12O19-TiO2 Composite Coated with Conducting Polymer. <i>Journal of Superconductivity and Novel Magnetism</i> , 2013 , 26, 1369-1373	1.5	8
138	Polymer Assisted Co-precipitation Synthesis and Characterization of Polyethylene Glycol (PEG)/CoFe2O4 Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 592-598	3.2	8
137	RXTE-PCA observations of XMMU J054134.7882550. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 1662-1668	4.3	8
136	PEG-Assisted Synthesis of Mn3O4 Nanoparticles: A Structural and Magnetic Study. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2011 , 41, 768-773		8
135	Synthesis and characterisation of 1,3-bis(2-benzimidazyl)-2-thiapropane, 1,5-bis(2-benzimidazyl)-3-thiapentane ligands and their PdCl2 complexes. <i>Transition Metal</i> Chemistry 2004, 29, 159-163	2.1	8

(2021-2003)

134	Einstein spaces in warped geometries in five dimensions. <i>Physical Review D</i> , 2003 , 68,	4.9	8
133	Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. <i>Journal of Alloys and Compounds</i> , 2022 , 899, 163173	5.7	8
132	Investigation of hard/soft CoFe2O4/NiSc0.03Fe1.97O4 nanocomposite for energy storage applications. <i>International Journal of Energy Research</i> , 2021 , 45, 16691-16708	4.5	8
131	Tracking of SPIONs in Barley (Hordeum vulgare L.) Plant Organs During its Growth. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 3285-3294	1.5	7
130	Dielectric properties of triethylene glycol-stabilized Mn1\(\mathbb{\textra}\)ZnxFe2O4 nanoparticles. <i>Materials Chemistry and Physics</i> , 2015 , 165, 156-167	4.4	7
129	CoFe Nanoparticles in Carbon Nanofibers as an Electrode for Ultra-Stable Supercapacitor. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 3608-3616	3.2	7
128	The LOFT mission concept: a status update 2016 ,		7
127	Magnetically Recyclable Fe3O4@His@Cu Nanocatalyst for Degradation of Azo Dyes. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 2548-56	1.3	7
126	Synthesis and Characterization of Superparamagnetic Co3O4@ZnO Nanocomposite. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 1751-1755	1.5	7
125	The Ionic Liquid Based Synthesis of PolyanilineMnFe2O4©TAB Nanocomposite: Electrical Properties. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2013 , 23, 1335-1340	3.2	7
124	Synthesis of PolyanilineMnFe2O4ITAB Nanocomposite in Ionic Liquid: Its Magnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1368-1374	3.2	7
123	Optical and X-ray outbursts of Be/X-ray binary system SAX J2103.5+4545. <i>Astronomy and Astrophysics</i> , 2009 , 508, 895-900	5.1	7
122	The effect of neutralizing agent on the synthesis and characterization of Mn3O4 nanoparticles. <i>Russian Journal of Inorganic Chemistry</i> , 2010 , 55, 1947-1952	1.5	7
121	The noise in the 35-d cycle of Her X-1. Monthly Notices of the Royal Astronomical Society, 1993, 265, 347-	-3459	7
120	X-ray outburst of 4U 0115+634 and ROTSE observations of its optical counterpart V635 Cas. <i>Astronomy and Astrophysics</i> , 2005 , 439, 1131-1134	5.1	7
119	Designing of CoNi.GaFeO (0.0 ៤ 🗈 .0) Microspheres via Hydrothermal Approach and Their Selective Inhibition on the Growth of Cancerous and Fungal Cells. <i>Pharmaceutics</i> , 2021 , 13,	6.4	7
118	Conductivity and Dielectric Properties of Nearly Monodisperse NiFe 2 O 4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2016 , 29, 1923-1930	1.5	7
117	Anti-microbial and anti-cancer activities of MnZnDyFeO[(x 🛈 .1) nanoparticles. <i>Artificial Cells,</i> Nanomedicine and Biotechnology, 2021 , 49, 493-499	6.1	7

116	Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2021 , 270, 115202	3.1	7
115	Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0.02Zr0.02Fe11.96O19 with variable spinel phase MFe2O4 (M = Mn, Co, Cu, and Zn). <i>Ceramics International</i> , 2021 , 47, 35209-35209	5.1	7
114	Electrical Properties of Cu Substituted Fe3O4 Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2016 , 29, 389-400	1.5	6
113	Ca2+/Mg2+ co-substituted strontium nanohexaferrites: magnetic investigation and Mossbauer analysis. <i>Journal of Sol-Gel Science and Technology</i> , 2019 , 92, 239-251	2.3	6
112	Synthesis and Characterization of Sulfamic-Acid Functionalized Magnetic Fe3O4 Nanoparticles Coated by Poly(amidoamine) Dendrimer. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 948-953	3.2	6
111	Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles. <i>Bioprocess and Biosystems Engineering</i> , 2013 , 36, 1807-16	3.7	6
110	Polyol Approach for the Synthesis of Water Soluble Mn3O4 Nanoparticles Using PEG. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 1929-1935	1.5	6
109	Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. <i>Materials Today Nano</i> , 2022 , 100186	9.7	6
108	Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite 2011 , 3, 25		6
107	Recent RXTE/ASM and ROTSEIIId observations of EXO 2030+375 (V2246 Cygni). <i>Astronomy and Astrophysics</i> , 2008 , 479, 301-306	5.1	6
106	Synthesis and characterization of electrospun Ni0.5Co0.5⊠CdxNd0.02Fe1.78O4 nanofibers. <i>Nano Structures Nano Objects</i> , 2020 , 24, 100542	5.6	6
105	Fabrication of Spinel Cobalt Ferrite (CoFe2O4) Nanoparticles with Unique Earth Element Cerium and Neodymium for Anticandidal Activities. <i>ChemistrySelect</i> , 2019 , 4, 14329-14334	1.8	6
104	Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFeO/silica/cisplatin nanocomposite formulation. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 2217-2228	3	6
103	Influence of Ni substitution on opto-magnetic and electrochemical properties of CTAB-capped mesoporous SnO2 nanoparticles. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 7630-7	646 ¹	6
102	Superparamagnetic Iron Oxide Nanoparticles (SPION) Functionalized by Caffeic Acid (CFA). <i>Journal of Superconductivity and Novel Magnetism</i> , 2017 , 30, 2699-2706	1.5	5
101	Magnetic properties of triethylene glycol coated CoFe2O4 and Mn0.2Co0.8Fe2O4 NP's synthesized by polyol method. <i>Arabian Journal of Chemistry</i> , 2016 , 9, S1131-S1137	5.9	5
100	Incorporation of Micro-nutrients (Nickel, Copper, Zinc, and Iron) into Plant Body Through Nanoparticles. <i>Journal of Soil Science and Plant Nutrition</i> , 2020 , 20, 1872-1881	3.2	5
99	Structural, Optical and MBsbauer Study of Ba1 lkCuxFe12O19 (0.5 lk) Nano Hexaferrites. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 1446-1456	3.2	5

(2017-2016)

98	Structural characterization and vibrational studies of human urinary stones from Istanbul, Turkey. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016 , 160, 1-7	4.4	5	
97	Pulse frequency fluctuations of magnetars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 2-12	4.3	5	
96	Magnetic Properties of Annealed CoFe2O4 Nanoparticles Synthesized by the PEG-Assisted Route. Journal of Inorganic and Organometallic Polymers and Materials, 2014 , 24, 424-430	3.2	5	
95	Poly(amidoamine)-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis and Characterization. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 2097-2103	1.5	5	
94	Triethanolamine Assisted Hydrothermal Synthesis of Superparamagnetic Co3O4 Nanoparticles and Their Characterizations. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 2117-2122	1.5	5	
93	Magnetic hydrogel with high coercivity. <i>Materials Research Bulletin</i> , 2013 , 48, 2751-2757	5.1	5	
92	Poly(glycidylmethacrylate-co-vinyl ferrocene)-grafted iron oxide nanoparticles as an electron transfer mediator for amperometric phenol detection. <i>Current Applied Physics</i> , 2013 , 13, 1611-1619	2.6	5	
91	Timing studies of X Persei and the discovery of its transient quasi-periodic oscillation feature. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 457-465	4.3	5	
90	ZnxCu(1½)Fe2O4 Nanoferrites by Sol©el Auto Combustion Route: Cation Distribution and Microwave Absorption Properties. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 963-970	3.2	5	
89	Preparation of PVP (Polyvinyl Pyrrolidone)/Ba-Sr Hexaferrites via Gel to Crystalline Method. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2012 , 42, 1390-1397		5	
88	Green synthesis of Nd substituted Co-Ni nanospinel ferrites: a structural, magnetic, and antibacterial/anticancer investigation. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 055002	3	5	
87	Optical variabilities in the Be/X-ray binary system. <i>Astronomy and Astrophysics</i> , 2007 , 470, 1023-1029	5.1	5	
86	XIPE: the x-ray imaging polarimetry explorer 2016 ,		5	
85	Electrical Properties of Cerium and Yttrium Co-substituted Strontium Nanohexaferrites. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2019 , 29, 402-415	3.2	5	
84	Co-substitution of zirconium and neodymium on hyperfine interactions and AC susceptibility of SrFe12O19 nanohexaferrites. <i>Journal of Rare Earths</i> , 2020 , 38, 265-273	3.7	5	
83	Impact of Gd substitution on the structure, hyperfine interactions, and magnetic properties of Sr hexaferrites. <i>Ceramics International</i> , 2021 , 47, 33853-33853	5.1	5	
82	Sol-Gel Synthesis of Dy-Substituted NiCuZn(FeDy)O Nano Spinel Ferrites and Evaluation of Their Antibacterial, Antifungal, Antibiofilm and Anticancer Potentialities for Biomedical Application. <i>International Journal of Nanomedicine</i> , 2021 , 16, 5633-5650	7.3	5	
81	Synthesis and Characterization of Carboxylated Luteolin (CL)-Functionalized SPION. <i>Journal of Superconductivity and Novel Magnetism</i> , 2017 , 30, 2797-2804	1.5	4	

80	Magnetic Mesocellular Foam Functionalized by Curcumin for Potential Multifunctional Therapeutics. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 2077-2090	1.5	4
79	Electrical Properties of Mn-Doped Ni x Zn0.9\(\textit{ Fe2O4 Particles.}\) Journal of Superconductivity and Novel Magnetism, 2015 , 28, 1055-1064	1.5	4
78	Magnetic nanoparticles based nanocontainers for biomedical application 2020 , 229-250		4
77	Luteolin-Loaded Spion as a Drug Carrier for Cancer Cell In Vitro. <i>Journal of Superconductivity and Novel Magnetism</i> , 2018 , 31, 467-474	1.5	4
76	Polyol Synthesis of Fe3 O 4@Tween20 Nanocomposite in Vaseline Oil. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 2835-2839	1.5	4
75	Viscous timescale in high mass X-ray binaries. Astronomy and Astrophysics, 2011 , 529, A7	5.1	4
74	Dielectric and proton conductivity studies in organic electrolytes based on 2-perfluoroalkyl-ethyl-azides. <i>Current Applied Physics</i> , 2010 , 10, 133-137	2.6	4
73	Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive trans-3-(trans-4-imidazolyl) acrylic acid molecules. <i>Applied Organometallic Chemistry</i> , 2021 , 35, e6229	3.1	4
72	Ultrasonic Synthesis and Biomedical Application of MnZnErYFeO Nanoparticles. <i>Biomolecules</i> , 2021 , 11,	5.9	4
71	Development of Novel Nano-ZnO Enhanced Polymeric Membranes for Water Purification. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2019 , 29, 979-988	3.2	4
70	Investigation on the structural, optical, and magnetic features of Dy3+ and Y3+ co-doped Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles. <i>Journal of Molecular Structure</i> , 2022 , 1248, 131412	3.4	4
69	Multistimuli-responsive magnetic assemblies 2019 , 155-193		3
68	SrCoxZrxFe120xO19 and SrNixZrxFe120xO19 hexaferrites: A Comparison Study of AC Susceptibility, FC-ZFC and hyperfine interactions. <i>Chinese Journal of Physics</i> , 2020 , 66, 596-605	3.5	3
67	Comprehensive timing and X-ray spectral analysis of GX 1+4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2509-2516	4.3	3
66	Dielectric and microstructural properties of YAG:Dy3+ ceramics. <i>Journal of Rare Earths</i> , 2018 , 36, 1310-1	1 3 .1 / 8	3
65	Mn3O4@ZnO CoreBhell Nanocomposite: Synthesis and Characterization. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 531-535	3.2	3
64	Effect of Annealing Temperature and Boron Addition on Magnetic Properties of Hexaferrites Synthesized by Standard Ceramic Method. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 1395-1404	1.5	3
63	Synthesis and characterization of polyvinylimidazole-grafted superparamagnetic iron oxide nanoparticles (Si-PVIm-grafted SPION). <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	3

62	Synthesis, characterization and magnetic investigation of (NH4)0.5Mn1.25(H2O)2[BP2O8]D.5H2O. <i>Open Chemistry</i> , 2007 , 5, 536-545	1.6	3	
61	Discussion on the Structure of Boron Containing Apatite. <i>Key Engineering Materials</i> , 2004 , 264-268, 20	17 ⊙ 2. 0 2	2 3	
60	Measurement of NOx, SO2, SPM, and O3 at a High Altitude Station in Northwestern Turkey. <i>Israel Journal of Chemistry</i> , 1994 , 34, 403-409	3.4	3	
59	Structure, magnetoelectric, and anticancer activities of core-shell Co0lBMn0.2R0.02Fe1l 8O4@BaTiO3 nanocomposites (R = Ce, Eu, Tb, Tm, or Gd). <i>Ceramics International</i> , 2022 ,	5.1	3	
58	Impact of Sm and Er Cations on the Structural, Optical, and Magnetic Traits of Spinel Cobalt Ferrite Nanoparticles: Comparison Investigation <i>ACS Omega</i> , 2022 , 7, 6292-6301	3.9	3	
57	Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite 2011 , 3, 91		3	
56	Comparative study of sonochemically and hydrothermally synthesized Mn0.5Zn0.5SmxEuxFe20xO4 nanoparticles: Structural, optical and magnetic properties. <i>Nano Structures Nano Objects</i> , 2021 , 28, 100792	5.6	3	
55	Synthesis, Characterization, Anti-Cancer Analysis of SrBaDySmFeO (0.00 🖽 .0) Microsphere Nanocomposites. <i>Nanomaterials</i> , 2021 , 11,	5.4	3	
54	Kinetic Modeling for Photo-Assisted Penicillin G Degradation of (MnZn)[CdFe]O (x 🛈 .05) Nanospinel Ferrites. <i>Nanomaterials</i> , 2021 , 11,	5.4	3	
53	Structural, optical, and electrochemical investigations of sb-substituted mesoporous SnO2 nanoparticles. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 4132-4145	2.1	3	
52	SPION@APTES@FA-PEG@Usnic Acid Bionanodrug for Cancer Therapy. <i>Journal of Superconductivity and Novel Magnetism</i> , 2018 , 31, 1395-1401	1.5	3	
51	Structural investigation of Cu doped calcium ferrite (Ca1-xCuxFe2O4; $x = 0, 0.2, 0.4, 0.6, 0.8, 1$) nanomaterials prepared by co-precipitation method. <i>Journal of Materials Research and Technology</i> , 2022 , 18, 705-719	5.5	3	
50	Electrical and Dielectric Characterization of Billa Ion-Substituted Barium Hexaferrites. <i>Journal of Superconductivity and Novel Magnetism</i> , 2017 , 30, 1499-1514	1.5	2	
49	Influence of charge disproportionation on microwave characteristics of ZnNd substituted Sr-hexaferrites. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 6776-6785	2.1	2	
48	The Effect of Folic Acid- and Caffeic Acid-Functionalized SPION on Different Cancer Cell Lines. <i>Journal of Superconductivity and Novel Magnetism</i> , 2018 , 31, 3579-3588	1.5	2	
47	RXTE and Swift Observations of SWIFT J0513.48547. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 845-852	4.3	2	
46	Grafted/ungrafted iron oxide and alginic acidpolyvinylimidazole nanocomposites: Synthesis and electrical properties. <i>Materials Research Bulletin</i> , 2013 , 48, 3973-3980	5.1	2	
45	Magnetic Properties of FeMnyCoyFe2ØyO4@Oleylamine Nanocomposite with Cation Distribution. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1740-1749	3.2	2	

44	Spin down and oscillations in 4U 1907+09: a retrograde disk?. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 69, 224-227		2
43			2
42	A study on the electrical and dielectric properties of SrGdxFe12NO19 (x = 0.00D.05) nanosized M-type hexagonal ferrites. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 18317-18329	2.1	2
41	SmDy co-substituted Sr hexaferrite microspheres: An investigation on their structural, magnetic, optical, and porosity characteristics. <i>Ceramics International</i> , 2021 , 47, 25131-25131	5.1	2
40	Anisotropy of the electrical properties of a single crystal of BaFe11.25Ti0.75O19 M-type barium hexaferrite. <i>Journal of Solid State Chemistry</i> , 2021 , 298, 122104	3.3	2
39	The Effect of Cr3+ Substitution on Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by Microwave Combustion Route. <i>Journal of Superconductivity and Novel Magnetism</i> , 2016 , 29, 2395-2400	1.5	2
38	Oleylamine surface functionalized FeCoyFe2¶O4 (0.0? y? 1.0) nanoparticles. <i>Arabian Journal of Chemistry</i> , 2019 , 12, 4971-4981	5.9	2
37	AC susceptibility and FC-ZFC magnetic properties of SrTbxFe12NO19 and SrTmxFe12NO19 hexaferrites: a comparative study. <i>Journal of Rare Earths</i> , 2021 , 39, 1003-1009	3.7	2
36	Synthesis and Characterization of Culln Substituted SrFe12O19 Hexaferrites. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 212-222	3.2	2
35	Fate and impact of maghemite (EFeO) and magnetite (FeO) nanoparticles in barley (Hordeum vulgare L.). Environmental Science and Pollution Research, 2021, 1	5.1	2
34	Alterations in the magnetic and electrodynamic properties of hard-soft Sr0.5Ba0.5Eu0.01Fe12O19/NixCuyZnwFe2O4 nanocomposites. <i>Journal of Materials Research and Technology</i> , 2021 , 15, 1416-1429	5.5	2
33	Morphological, structural, and magnetic characterizations of hard-soft ferrite nanocomposites synthesized via pulsed laser ablation in liquid. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2021 , 273, 115446	3.1	2
32	Adrenalin tolerance does not prevent bacterial translocation in a murine burn model. <i>International Surgery</i> , 2000 , 85, 18-22	0.1	2
31	Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. <i>Crystals</i> , 2022 , 12, 268	2.3	2
30	PolyanilineMnFe2O4-CTAB Nanocomposite in Ionic Liquid: Electrical Properties. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 1073-1078	1.5	1
29	Size Controlled Synthesis of CoFe2O4 Nanoparticles with Polyethylene Glycol. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 1309-1313	1.5	1
28	RXTE and Swift observations of SWIFT J1729.9B437. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 2772-2778	4.3	1
27	Optical observations of the Be/X-ray transient system KS 1947+300. <i>Astronomische Nachrichten</i> , 2007 , 328, 142-145	0.7	1

26	X-ray powder diffraction, FTIR, and raman study of strontium boroarsenate, SrBAsO5. <i>Russian Journal of Inorganic Chemistry</i> , 2008 , 53, 1009-1012	1.5	1
25	Ozone concentrations at a rural mountain site of Northwestern Turkey. <i>Water, Air, and Soil Pollution</i> , 1996 , 91, 219-232	2.6	1
24	Structural and magnetic properties of hydrothermally synthesized Bi-substituted Ni C o nanosized spinel ferrites. <i>Ceramics International</i> , 2021 ,	5.1	1
23	The Effect of Condensation on the Morphology and Magnetic Properties of Modified Barium Hexaferrite (BaFe12O19) 2011 , 3, 108		1
22	Impact of calcination temperature on electrical and dielectric properties of SrGa0.02Fe11.98O19-Zn0.5Ni0.5Fe2O4 hard/soft nanocomposites. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 16589-16600	2.1	1
21	The effect of Yb3+ ion substitution on dielectric and microstructural properties of Y3Al5O12 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 609-623	2.1	1
20	The impact of Eu3+ ion substitution on dielectric properties of Y3\(\text{\text{B}}\)EuxAl5O12 (0.00 \(\text{\text{\text{k}}}\)\(\text{\text{D}}\).10) ceramics. Journal of Materials Science: Materials in Electronics, 2019 , 30, 2489-2500	2.1	1
19	Delivery, fate and physiological effect of engineered cobalt ferrite nanoparticles in barley (Hordeum vulgare L.). <i>Chemosphere</i> , 2021 , 265, 129138	8.4	1
18	Perovskite® potential functionality in a composite structure 2021 , 181-202		1
17	Structural, Magnetic, and Mossbauer Parameters' Evaluation of Sonochemically Synthesized Rare Earth Er and Y Ions-Substituted Manganese-Zinc Nanospinel Ferrites. <i>ACS Omega</i> , 2021 , 6, 22429-22438	3.9	1
16	Effects of CeDy rare earths co-doping on various features of NiCo spinel ferrite microspheres prepared via hydrothermal approach. <i>Journal of Materials Research and Technology</i> , 2021 , 14, 2534-255	3 ^{5.5}	1
15	Effect of Sr2+ IonBubstituted Nickel Ferrite Nanoparticles Prepared by a Simple Microwave Combustion Method. <i>Journal of Superconductivity and Novel Magnetism</i> , 2021 , 34, 971-980	1.5	1
14	Sonochemical synthesis of Mn0.5Zn0.5ErxDyxFe2-2xO4 (xIII).1) spinel nanoferrites: Magnetic and textural investigation. <i>Journal of Molecular Structure</i> , 2022 , 1258, 132680	3.4	1
13	An investigation on structural, optical and magnetic properties of hard-soft SrFe12O19/(CoEu0.02Fe1.98O4)x nanofiber composites. <i>Journal of Alloys and Compounds</i> , 2022 , 905, 164240	5.7	1
12	Comprehensive analysis of the transient X-ray pulsar MAXI J1409B19. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 1768-1783	4.3	O
11	Electrospinning synthesis of Cd-substituted Nito spinel ferrite nanofibers: an investigation into their structural and magnetic features. <i>Applied Physics A: Materials Science and Processing</i> , 2021 , 127, 1	2.6	O
10	Emerging trends in the delivery of nanoformulated oxytocin across Blood-Brain barrier. <i>International Journal of Pharmaceutics</i> , 2021 , 609, 121141	6.5	0
9	A study on the conductivity, dielectric, and microwave properties of SrNbxYxFe12-2xO19 (0.00 lk [] 0.05) nanohexaferrites. <i>Journal of Materials Research and Technology</i> , 2022 , 17, 2975-2986	5.5	О

8	Effect of Bi3+ ions substitution on the structure, morphology, and magnetic properties of CoNi spinel ferrite nanofibers. <i>Materials Chemistry and Physics</i> , 2022 , 284, 126071	4.4	О
7	Timing and spectral analysis of 2S 1417 B 24 during its 2018 outburst. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 510, 1438-1449	4.3	O
6	Superconductivity Phenomenon: Fundamentals and Theories 2022, 1-27		О
5	PolyanilineMnFe2O4IITAB Nanocomposite: Low Temperature Magnetic Investigation. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 1517-1523	1.5	
4	Preparation and conductivities of polyacrylic acid/polyvinylimidazole grafted and ungrafted iron oxide nanocomposite polymer electrolytes. <i>Open Chemistry</i> , 2013 , 11, 1768-1779	1.6	
3	Torque Noise Models for Accretion Powered X-ray Binaries 1995 , 397-400		
2	Effect of Er3+ and Y3+ ions co-substitution on conductivity and dielectric features of Mn-Zn nanosized spinel ferrites. <i>Journal of Materials Science: Materials in Electronics</i> ,1	2.1	
1	Magnetic Characterization of Nanomaterials 2022 , 177-238		