Zhaohe Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887561/publications.pdf

Version: 2024-02-01

		147726	1	61767
55	3,577	31		54
papers	citations	h-index		g-index
55	55	55		5090
33	33	33		3090
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. Advanced Materials, 2019, 31, e1805417.	11.1	415
2	Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Advanced Functional Materials, 2016, 26, 2078-2084.	7.8	328
3	Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small, 2018, 14, e1800819.	5.2	326
4	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	11,1	157
5	Measuring Interlayer Shear Stress in Bilayer Graphene. Physical Review Letters, 2017, 119, 036101.	2.9	155
6	Bending of Multilayer van der Waals Materials. Physical Review Letters, 2019, 123, 116101.	2.9	139
7	Low-cost, \hat{l} /4m-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. Npj Flexible Electronics, 2018, 2, .	5.1	132
8	Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7884-7889.	3.3	130
9	Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7, 9252-9260.	2.8	126
10	Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 22804-22812.	2.8	106
11	Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials. Physical Review Letters, 2018, 121, 266101.	2.9	86
12	Modular and Reconfigurable Wireless Eâ€Tattoos for Personalized Sensing. Advanced Materials Technologies, 2019, 4, 1900117.	3.0	86
13	Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105927.	3.8	85
14	Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22554-22562.	4.0	84
15	Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Composites Science and Technology, 2016, 136, 1-9.	3.8	80
16	Construction of Smallâ€Diameter Vascular Graft by Shapeâ€Memory and Selfâ€Rolling Bacterial Cellulose Membrane. Advanced Healthcare Materials, 2017, 6, 1601343.	3.9	79
17	Mechanics at the interfaces of 2D materials: Challenges and opportunities. Current Opinion in Solid State and Materials Science, 2020, 24, 100837.	5.6	61
18	Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. Journal of Materials Chemistry A, 2015, 3, 8380-8388.	5.2	56

#	Article	IF	CITATIONS
19	Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Scientific Reports, 2016, 6, 18930.	1.6	56
20	Hierarchical Grapheneâ€Based Films with Dynamic Selfâ€Stiffening for Biomimetic Artificial Muscle. Advanced Functional Materials, 2016, 26, 7003-7010.	7.8	53
21	Creep-resistant behavior of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature. Polymer, 2013, 54, 3723-3729.	1.8	45
22	Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites. Polymer, 2015, 68, 131-139.	1.8	45
23	Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. Journal of Materials Chemistry B, 2016, 4, 1924-1931.	2.9	44
24	Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon, 2017, 123, 786-793.	5.4	44
25	Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. Composites Science and Technology, 2017, 149, 220-227.	3.8	38
26	Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40958-40967.	4.0	35
27	Radial buckle delamination around 2D material tents. Journal of the Mechanics and Physics of Solids, 2020, 137, 103843.	2.3	34
28	Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene. Journal of Physical Chemistry C, 2017, 121, 26034-26043.	1.5	33
29	Nanostructured carbon materials based electrothermal air pump actuators. Nanoscale, 2014, 6, 6932-6938.	2.8	32
30	Piezocatalytic Foam for Highly Efficient Degradation of Aqueous Organics. Small Science, 2021, 1, 2000011.	5.8	32
31	Poking and bulging of suspended thin sheets: Slippage, instabilities, and metrology. Journal of the Mechanics and Physics of Solids, 2021, 149, 104320.	2.3	32
32	Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio. Scientific Reports, 2016, 6, 32989.	1.6	31
33	2D Material Bubbles: Fabrication, Characterization, and Applications. Trends in Chemistry, 2021, 3, 204-217.	4.4	31
34	Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures. ACS Applied Materials & Interfaces, 2019, 11, 6541-6549.	4.0	30
35	Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
36	Mechanical responses of boron-doped monolayer graphene. Carbon, 2019, 147, 594-601.	5.4	28

#	Article	IF	Citations
37	Strengthening in Metal/Graphene Composites: Capturing the Transition from Interface to Precipitate Hardening. ACS Applied Materials & Interfaces, 2021, 13, 26610-26620.	4.0	27
38	Elastic wetting: Substrate-supported droplets confined by soft elastic membranes. Journal of the Mechanics and Physics of Solids, 2021, 151, 104399.	2.3	24
39	Engineering Surface Patterns with Shape Memory Polymers: Multiple Design Dimensions for Diverse and Hierarchical Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1563-1570.	4.0	23
40	A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Research, 2018, 11, 3931-3942.	5.8	22
41	Out-of-Plane Deformations Determined Mechanics of Vanadium Disulfide (VS ₂) Sheets. ACS Applied Materials & Discourse (Samp) (12, 13, 3040-3050).	4.0	21
42	Elastocapillary cleaning of twisted bilayer graphene interfaces. Nature Communications, 2021, 12, 5069.	5.8	19
43	NFC-enabled, tattoo-like stretchable biosensor manufactured by "cut-and-paste―method. , 2017, 2017, 4094-4097.		19
44	Crack Control in Biotemplated Gold Films for Wideâ€Range, Highly Sensitive Strain Sensing. Advanced Materials Interfaces, 2019, 6, 1901223.	1.9	17
45	Stretchability of PMMA-supported CVD graphene and of its electrical contacts. 2D Materials, 2020, 7, 014003.	2.0	17
46	2D Materials: Strain Engineering of 2D Materials: Issues and Opportunities at the Interface (Adv.) Tj ETQq0 0 0 r	gBT /Overl 11.1	ock 10 Tf 50 3
47	Engineering the interface in mechanically responsive graphene-based films. RSC Advances, 2018, 8, 36257-36263.	1.7	13
48	Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Advanced Materials Interfaces, 2022, 9, .	1.9	12
49	Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. IScience, 2022, 25, 103728.	1.9	11
50	Two-dimensional crystals on adhesive substrates subjected to uniform transverse pressure. International Journal of Solids and Structures, 2022, 257, 111829.	1.3	11
51	Elastic–plastic properties of graphene engineered by oxygen functional groups. Journal Physics D: Applied Physics, 2017, 50, 385305.	1.3	6
52	Droplets on lubricated surfaces: The slow dynamics of skirt formation. Physical Review Fluids, 2022, 7,	1.0	6
53	"Cut-and-paste―method for the rapid prototyping of soft electronics. Science China Technological Sciences, 2019, 62, 199-208.	2.0	5
54	Cyclic microbridge testing of graphene oxide membrane. Carbon, 2017, 116, 479-489.	5.4	4

Article IF Citations

Strain Sensing: Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors (Adv.) Tj ETQq1 1 0.784314 rgBT /Over