
Li-Qiong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Critical Reviews in Food Science and Nutrition, 2023, 63, 7692-7707.	10.3	3
2	Ergothioneine exhibits longevity-extension effect in <i>Drosophila melanogaster via</i> regulation of cholinergic neurotransmission, tyrosine metabolism, and fatty acid oxidation. Food and Function, 2022, 13, 227-241.	4.6	11
3	Chemical composition and deterioration mechanism of Pleurotus tuoliensis during postharvest storage. Food Chemistry, 2021, 338, 127731.	8.2	23
4	<scp>TMTâ€MS</scp> / <scp>MS</scp> proteomic analysis of the carbohydrateâ€active enzymes in the fruiting body of <i>Pleurotus tuoliensis</i> during storage. Journal of the Science of Food and Agriculture, 2021, 101, 1879-1891.	3.5	10
5	A comparative study on the physioâ€chemical properties, antioxidant and immunoâ€stimulating activities of two national geographical indication products of <i>Tremella fuciformis</i> in China. International Journal of Food Science and Technology, 2021, 56, 2904-2914.	2.7	2
6	Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Research International, 2021, 142, 110211.	6.2	29
7	Enhancement of carotenoid production and its regulation in edible mushroom Cordyceps militaris by abiotic stresses. Enzyme and Microbial Technology, 2021, 148, 109808.	3.2	11
8	Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food Research International, 2021, 147, 110540.	6.2	24
9	Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply. Frontiers in Microbiology, 2021, 12, 803490.	3.5	4
10	Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. International Journal of Biological Macromolecules, 2020, 145, 11-20.	7.5	62
11	Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microbial Cell Factories, 2020, 19, 164.	4.0	22
12	Transcriptome Analysis Reveals the Flexibility of Cordycepin Network in Cordyceps militaris Activated by L-Alanine Addition. Frontiers in Microbiology, 2020, 11, 577.	3.5	23
13	The Biosynthetic Pathway of Ergothioneine in Culinary-Medicinal Winter Mushroom, Flammulina velutipes (Agaricomycetes). International Journal of Medicinal Mushrooms, 2020, 22, 171-181.	1.5	5
14	Structural Analysis and Antioxidant Activity of Extracellular Polysaccharides Extracted from Culinary-Medicinal White Jelly Mushroom Tremella fuciformis (Tremellomycetes) Conidium Cells. International Journal of Medicinal Mushrooms, 2020, 22, 489-500.	1.5	8
15	An Efficient Strategy for Enhancement of Bioactive Compounds in the Fruit Body of Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), by Spraying Biotic Elicitors. International Journal of Medicinal Mushrooms, 2020, 22, 1161-1170.	1.5	3
16	Purification and structural characterization of a novel natural pigment: cordycepene from edible and medicinal mushroom Cordyceps militaris. Applied Microbiology and Biotechnology, 2019, 103, 7943-7952.	3.6	8
17	Optimization of Baccatin III Production by Cross-Linked Enzyme Aggregate of Taxoid 10β-O-Acetyltransferase. Molecular Biotechnology, 2019, 61, 498-505.	2.4	3
18	Musa basjoo regulates the gut microbiota in mice by rebalancing the abundance of probiotic and pathogen. Microbial Pathogenesis, 2019, 131, 205-211.	2.9	4

LI-QIONG GUO

A simple and effective method using macroporous resins for the simultaneous decoloration and deproteinisation of Cordyceps militaris polysaccharides. International Journal of Food Science and 2.7 Technology, 2019, 54, 1741-1751.	15
	2
²⁰ In vitro enzymatic synthesis of baccatin III with novel and cheap acetyl donors by the recombinant taxoid 10Î ² -O-acetyl transferase. Biocatalysis and Biotransformation, 2019, 37, 239-245.	
21Developing a Novel Two-Stage Process for Carotenoid Production by CordycepsÂmilitaris1.5(Ascomycetes). International Journal of Medicinal Mushrooms, 2019, 21, 47-57.1.5	8
Optimization of Cultivation Conditions of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes) for the Highest Antioxidant Activity and Antioxidant Content. International Journal 1.5 of Medicinal Mushrooms, 2019, 21, 353-366.	3
Increasing of the Contain of Carotenoids in Caterpillar Mushroom, Cordyceps militaris (Ascomycetes) 23 by Using the Fungal Elicitors Cultivation. International Journal of Medicinal Mushrooms, 2019, 21, 1.5 1181-1191.	11
Targeted Gene Deletion in Cordyceps militaris Using the Split-Marker Approach. Molecular 2.4 Biotechnology, 2018, 60, 380-385.	22
 Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech, 2018, 8, 444. 	24
26 Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus 2.5 siamensis JFL15. PLoS ONE, 2018, 13, e0202893.	31
27Activity Essential Residue Analysis of Taxoid 10Î2-O-Acetyl Transferase for Enzymatic Synthesis of Baccatin. Applied Biochemistry and Biotechnology, 2018, 186, 949-959.2.9	7
 Improving the thermal stability of anisyl alcohol by βâ€galactosidase enzymatic glycosylation. International Journal of Food Science and Technology, 2018, 53, 2723-2729. 	2
 Enhanced catalytic activities and modified substrate preferences for taxoid 10Î²-O-acetyl transferase mutants by engineering catalytic histidine residues. Biotechnology Letters, 2018, 40, 1245-1251. 	6
 30 <i>>De novo</i> transcriptome sequencing of <i>>Flammulina velutipes</i> uncover candidate genes associated with coldâ€induced fruiting. Journal of Basic Microbiology, 2018, 58, 698-703. 3.3 	6
Improvement of Nutritional and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, 31 Hericium erinaceus (Agaricomycetes), by Spraying Growth Regulators. International Journal of 1.5 Medicinal Mushrooms, 2018, 20, 271-281.	2
Heterologous expression of the multi-functional cellulase gene (<i>mfc</i>) from the mollusc <i>Ampullaria crossean</i> , in <i>Volvariella volvacea</i> . Journal of Horticultural Science 1.9 and Biotechnology, 2016, 91, 325-331.	5
A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. World Journal of Microbiology and Biotechnology, 2016, 32, 102.	38
A novel process for obtaining phenylpropanoic acid precursor using Escherichia coli with a constitutive expression system. Food Science and Biotechnology, 2016, 25, 795-801.	2
 Compositional analysis of the fruiting body of transgenic Flammulina velutipes producing 8.2 8.2 	15