Lander Galdos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4887139/publications.pdf

Version: 2024-02-01

759233 794594 64 575 12 19 citations h-index g-index papers 64 64 64 444 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Substitutive Press-Bolster and Press-Ram Models for the Virtual Estimation of Stamping-Tool Cambering. Materials, 2022, 15, 279.	2.9	1
2	The Interaction between the Sheet/Tool Surface Texture and the Friction/Galling Behaviour on Aluminium Deep Drawing Operations. Metals, 2021, 11, 979.	2.3	15
3	New drawbead tester and numerical analysis of drawbead closure force. International Journal of Advanced Manufacturing Technology, 2021, 116, 1855-1869.	3.0	2
4	Integral Design and Manufacturing Methodology of a Reduced-Scale Servo Press. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2418-2428.	5.8	3
5	The Effect of Material Surface Roughness in Aluminum Forming. Procedia Manufacturing, 2020, 47, 591-595.	1.9	8
6	Monitoring of a Hammer Forging Testing Machine for High-Speed Material Characterization. Procedia Manufacturing, 2020, 47, 321-328.	1.9	3
7	Strain Rate Effect on the Fracture Behavior of the AA5754 Aluminum Alloy. Procedia Manufacturing, 2020, 47, 1264-1269.	1.9	5
8	The influence of the kinematic hardening on the FEM simulation of Tension Levelling Process. Procedia Manufacturing, 2020, 47, 1381-1386.	1.9	3
9	Aluminum Springback Reduction by Post-forming Electric Pulses. Procedia Manufacturing, 2020, 47, 1387-1391.	1.9	2
10	Experimental and Numerical Simulation Investigation on Deep Drawing Process of Inconel 718 with and without Intermediate Annealing Thermal Treatments. Applied Sciences (Switzerland), 2020, 10, 581.	2.5	3
11	Experimental and numerical investigation of the cutting force during the angle shearing of several steels. AIP Conference Proceedings, 2019 , , .	0.4	1
12	Numerical prediction of force and energy consumption in roll forming processes. AIP Conference Proceedings, 2019, , .	0.4	0
13	Press hardening of alternative materials: conventional high-strength steels. International Journal of Material Forming, 2018, 11, 663-670.	2.0	1
14	Improving the prediction of the final part geometry in high strength steels U drawing by means of advanced material and friction models. AIP Conference Proceedings, 2018, , .	0.4	1
15	Hardening prediction of diverse materials using the Digital Image Correlation technique. Mechanics of Materials, 2018, 124, 71-79.	3.2	15
16	On the plastic flow rule formulation in anisotropic yielding aluminium alloys. International Journal of Advanced Manufacturing Technology, 2018, 99, 255-274.	3.0	5
17	Influence of roll levelling on material properties and postforming springback. AIP Conference Proceedings, 2018, , .	0.4	3
18	Friction and Heat Transfer Coefficient Determination of Titanium Alloys during Hot Forging Conditions. Advanced Engineering Materials, 2017, 19, 1600060.	3.5	4

#	Article	IF	Citations
19	Hole expansion test of third generation steels. AIP Conference Proceedings, 2017, , .	0.4	1
20	Numerical simulation of U-Drawing test of Fortiform 1050 steel using different material models. Procedia Engineering, 2017, 207, 137-142.	1.2	1
21	Characterization of Ti64 forging friction factor using ceramic coatings and different contact conditions. Procedia Engineering, 2017, 207, 2239-2244.	1.2	4
22	Cost efficiency of the non-associative flow rule simulation of an industrial component. AIP Conference Proceedings, $2017, \ldots$	0.4	1
23	Sensitivity analysis on an AC600 aluminum skin component. Journal of Physics: Conference Series, 2016, 734, 032035.	0.4	0
24	Investigation of influencing factors on friction during ring test in hot forging using FEM simulation. AIP Conference Proceedings, 2016, , .	0.4	1
25	Influence of the pressure dependent coefficient of friction on deep drawing springback predictions. AIP Conference Proceedings, 2016, , .	0.4	2
26	Friction characterisation in levelling processes. Advances in Materials and Processing Technologies, 2016, 2, 503-513.	1.4	4
27	Identification of Friction Coefficient in Forging Processes by Means T-Shape Tests in High Temperature. Key Engineering Materials, 2016, 716, 165-175.	0.4	4
28	Influence of the pressure dependent coefficient of friction on deep drawing springback predictions. Tribology International, 2016, 103, 266-273.	5.9	44
29	Press hardening of alternative high strength aluminium and ultra-high strength steels. AIP Conference Proceedings, 2016, , .	0.4	1
30	Roll levelling semi-analytical model for process optimization. Journal of Physics: Conference Series, 2016, 734, 032034.	0.4	5
31	Influence of material's hardening behaviour of DP1000 on numerical springback prediction. AIP Conference Proceedings, 2016, , .	0.4	0
32	Experimental characterization of the heat transfer coefficient under different close loop controlled pressures and die temperatures. Applied Thermal Engineering, 2016, 99, 813-824.	6.0	21
33	Tailor Tempering and Hot-Spotting of Press Hardened Boron Steels. Key Engineering Materials, 2015, 651-653, 789-795.	0.4	O
34	Comparison of Three Methods for Material Hardening Parameter Identification under Cyclic Tension-Compression Loadings: Roll Levelling Case Study. Key Engineering Materials, 2015, 651-653, 957-962.	0.4	2
35	Determination of Heat Transfer Coefficients for Different Initial Tool Temperatures and Closed Loop Controlled Constant Contact Pressures. Key Engineering Materials, 2015, 651-653, 1537-1542.	0.4	1
36	Comparison of the hardening behaviour of different steel families: From mild and stainless steel to advanced high strength steels. International Journal of Mechanical Sciences, 2015, 101-102, 10-20.	6.7	51

#	Article	IF	CITATIONS
37	On the Bauschinger effect in dual phase steel at high levels of strain. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 643, 127-136.	5.6	31
38	Elastic behaviour characterisation of TRIP 700 steel by means of loading–unloading tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 147-152.	5.6	41
39	Friction Coefficient Identification in Roll Forming Processes. Key Engineering Materials, 2014, 611-612, 425-435.	0.4	4
40	Influence of Tooling Material and Temperature on the Final Properties of Tailor Tempered Boron Steels. Key Engineering Materials, 2014, 611-612, 1102-1109.	0.4	2
41	Testing and Modeling of Roll Levelling Process. Key Engineering Materials, 2014, 611-612, 1753-1762.	0.4	16
42	The Calibration of High Energy-Rate Impact Forging Hammers by the Copper-Column Upsetting Method and High Speed Camera Measurements. Key Engineering Materials, 2014, 611-612, 173-177.	0.4	3
43	Warm Forming of Mg Sheets: From Incremental to Electromagnetic Forming. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3362-3372.	2.2	4
44	An extended elastic law to represent non-linear elastic behaviour: Application in computational metal forming. International Journal of Mechanical Sciences, 2013, 77, 57-64.	6.7	18
45	Strain path′s influence on the elastic behaviour of the TRIP 700 steel. Materials Science & Delaying A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 433-438.	5.6	12
46	The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS., 2013,,.		7
47	Incremental Forming of Sandwich Materials. Key Engineering Materials, 2012, 504-506, 931-936.	0.4	2
48	Ludwik's Model Parameter Identification for V-Bending Simulations with Ti64 and MS1200. Key Engineering Materials, 2012, 504-506, 889-894.	0.4	5
49	Roll Forming Set-Up Influence in the Forming Forces and Profile Quality. Key Engineering Materials, 2012, 504-506, 1249-1254.	0.4	6
50	A generalised fractional derivative model to represent elastoplastic behaviour of metals. International Journal of Mechanical Sciences, 2012, 65, 12-17.	6.7	29
51	Comparison study of two constitutive equations for Al-5083 superplastic aluminium alloy. Materialwissenschaft Und Werkstofftechnik, 2012, 43, 780-785.	0.9	2
52	Enhancement of Incremental Sheet Metal Forming Technology by Means of Stretch Forming. , 2011, , .		3
53	Analysis of the Capabilities of a Hyperbolic Constitutive Equation for Al-5083 Superplastic Aluminium Alloy. , $2011,$,.		2
54	Geometrical accuracy improvement in flexible roll forming lines. AIP Conference Proceedings, 2011, , .	0.4	18

#	Article	IF	CITATIONS
55	Development and validation of a numerical model for sheet metal roll forming. International Journal of Material Forming, 2010, 3, 151-154.	2.0	19
56	Heat Treatment Selection and Forming Strategies for 6082 Aluminum Alloy. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131 , .	1.4	26
57	Warm Hydroforming of Lightweight Metal Sheets. AIP Conference Proceedings, 2007, , .	0.4	3
58	Tensile Behaviour of 6082 Aluminium Alloy Sheet under Different Conditions of Heat Treatment, Temperature and Strain Rate. Key Engineering Materials, 0, 423, 105-112.	0.4	16
59	New Strategy for the Prediction of the Gas Pressure Profile of Superplastic Forming of Al-5083 Aluminium Alloy. Materials Science Forum, 0, 735, 204-209.	0.3	1
60	Warm Incremental Forming of Magnesium Alloys Using Hot Fluid as Heating Media. Key Engineering Materials, 0, 504-506, 815-820.	0.4	40
61	Influence of the Number of Tensile/Compression Cycles on the Fitting of a Mixed Hardening Material Model: Roll Levelling Process Case Study. Key Engineering Materials, 0, 554-557, 2375-2387.	0.4	5
62	Room Temperature Forming of AA7075 Aluminum Alloys: W-Temper Process. Key Engineering Materials, 0, 651-653, 199-204.	0.4	40
63	Energy Efficient Servo Controlled Roll Levelling Machines. Key Engineering Materials, 0, 716, 413-419.	0.4	0
64	Influence of Material and Tribological Modelling on the Prediction of Big Size Automotive Components Springback. Key Engineering Materials, 0, 716, 713-718.	0.4	2