William P Inskeep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4886951/publications.pdf Version: 2024-02-01

MILLIAM DINSKEED

#	Article	IF	CITATIONS
1	Sulfur cycling and host-virus interactions in <i>Aquificales</i> -dominated biofilms from Yellowstone's hottest ecosystems. ISME Journal, 2022, 16, 842-855.	4.4	8
2	The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science, 2021, 374, 57-65.	6.0	152
3	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	5.9	115
4	Physiology, Metabolism, and Fossilization of Hot-Spring Filamentous Microbial Mats. Astrobiology, 2019, 19, 1442-1458.	1.5	18
5	Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nature Microbiology, 2019, 4, 614-622.	5.9	91
6	Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nature Microbiology, 2019, 4, 603-613.	5.9	187
7	Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community. PLoS Computational Biology, 2018, 14, e1006431.	1.5	11
8	Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nature Microbiology, 2018, 3, 732-740.	5.9	53
9	Dual stable isotopes of CH4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO2. Journal of Volcanology and Geothermal Research, 2017, 341, 187-192.	0.8	7
10	Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Scientific Reports, 2017, 7, 7252.	1.6	37
11	Methane clumped isotopes: Progress and potential for a new isotopic tracer. Organic Geochemistry, 2017, 113, 262-282.	0.9	100
12	Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response. Frontiers in Marine Science, 2017, 4, .	1.2	19
13	Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities. Frontiers in Microbiology, 2017, 8, 88.	1.5	41
14	Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs. Frontiers in Microbiology, 2016, 7, 25.	1.5	29
15	Novel, Deep-Branching Heterotrophic Bacterial Populations Recovered from Thermal Spring Metagenomes. Frontiers in Microbiology, 2016, 7, 304.	1.5	48
16	The distribution, diversity and function of predominant Thermoproteales in highâ€ŧemperature environments of Yellowstone National Park. Environmental Microbiology, 2016, 18, 4755-4769.	1.8	24
17	Stoichiometric modelling of assimilatory and dissimilatory biomass utilisation in a microbial community. Environmental Microbiology, 2016, 18, 4946-4960.	1.8	9
18	Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park. Extremophiles, 2016, 20, 291-299.	0.9	7

WILLIAM P INSKEEP

#	Article	IF	CITATIONS
19	Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‰streamer' community. ISME Journal, 2016, 10, 210-224.	4.4	94
20	The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales. Biology Direct, 2015, 10, 35.	1.9	22
21	Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function. Frontiers in Microbiology, 2015, 6, 1044.	1.5	21
22	Identification of anaerobic arseniteâ€oxidizing and arsenateâ€reducing bacteria associated with an alkaline saline lake in <scp>K</scp> hovsgol, <scp>M</scp> ongolia. Environmental Microbiology Reports, 2014, 6, 476-482.	1.0	46
23	Chemolithotrophic growth of the aerobic hyperthermophilic bacterium <i>Thermocrinis ruber</i> OC 14/7/2 on monothioarsenate and arsenite. FEMS Microbiology Ecology, 2014, 90, 747-760.	1.3	27
24	Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME Journal, 2014, 8, 938-951.	4.4	84
25	Carbon Dioxide Fixation by Metallosphaera yellowstonensis and Acidothermophilic Iron-Oxidizing Microbial Communities from Yellowstone National Park. Applied and Environmental Microbiology, 2014, 80, 2665-2671.	1.4	25
26	Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME Journal, 2013, 7, 622-634.	4.4	87
27	Microbial community structure and sulfur biogeochemistry in mildlyâ€acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology, 2013, 11, 86-99.	1.1	41
28	Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiology Ecology, 2013, 85, 168-178.	1.3	47
29	The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Frontiers in Microbiology, 2013, 4, 67.	1.5	196
30	<i>In situ</i> analysis of oxygen consumption and diffusive transport in highâ€ŧemperature acidic ironâ€oxide microbial mats. Environmental Microbiology, 2013, 15, 2360-2370.	1.8	22
31	Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Reveals Specialization of Three Aquificales Lineages. Frontiers in Microbiology, 2013, 4, 84.	1.5	73
32	Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry. Frontiers in Microbiology, 2013, 4, 95.	1,5	73
33	Community Structure and Function of High-Temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments. Frontiers in Microbiology, 2013, 4, 106.	1.5	112
34	Yellowstone Lake Nanoarchaeota. Frontiers in Microbiology, 2013, 4, 274.	1.5	22
35	Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms. Frontiers in Microbiology, 2012, 3, 109	1.5	82
36	Inhibition of microbial arsenate reduction by phosphate. Microbiological Research, 2012, 167, 151-156.	2.5	33

WILLIAM PINSKEEP

#	Article	IF	CITATIONS
37	Yellowstone Lake: highâ€energy geochemistry and rich bacterial diversity. Environmental Microbiology, 2011, 13, 2172-2185.	1.8	52
38	<i>Archaea</i> in Yellowstone Lake. ISME Journal, 2011, 5, 1784-1795.	4.4	67
39	Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function. PLoS ONE, 2010, 5, e9773.	1.1	186
40	Assessing Soil Microbial Populations Responding to Crude-Oil Amendment at Different Temperatures Using Phylogenetic, Functional Gene (<i>alkB</i>) and Physiological Analyses. Environmental Science & Technology, 2008, 42, 7580-7586.	4.6	50
41	Global Occurrence of Archaeal <i>amoA</i> Genes in Terrestrial Hot Springs. Applied and Environmental Microbiology, 2008, 74, 6417-6426.	1.4	189
42	Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environmental Microbiology, 2007, 9, 934-943.	1.8	190
43	Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Microbiological Research, 2007, 162, 37-45.	2.5	59
44	Microbial Population Dynamics Associated with Crude-Oil Biodegradation in Diverse Soils. Applied and Environmental Microbiology, 2006, 72, 6316-6324.	1.4	196
45	Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park. Applied and Environmental Microbiology, 2005, 71, 5943-5950.	1.4	82
46	Impact of Ferrihydrite and Anthraquinone-2,6-Disulfonate on the Reductive Transformation of 2,4,6-Trinitrotoluene by a Gram-Positive Fermenting Bacterium. Environmental Science & Technology, 2005, 39, 7126-7133.	4.6	78
47	Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park. Applied and Environmental Microbiology, 2004, 70, 1865-1868.	1.4	118
48	Linking geochemical processes with microbial community analysis: successional dynamics in an arsenic-rich, acid-sulphate-chloride geothermal spring. Geobiology, 2004, 2, 163-177.	1.1	104
49	ELK EXPOSURE TO ARSENIC IN GEOTHERMAL WATERSHEDS OF YELLOWSTONE NATIONAL PARK, USA. Environmental Toxicology and Chemistry, 2004, 23, 982.	2.2	14
50	Bacterial Populations Associated with the Oxidation and Reduction of Arsenic in an Unsaturated Soil. Environmental Science & Technology, 2004, 38, 104-111.	4.6	224
51	Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park. Geochimica Et Cosmochimica Acta, 2004, 68, 3141-3155.	1.6	102
52	Photochemical Oxidation of As(III) in Ferrioxalate Solutions. Environmental Science & Technology, 2003, 37, 1581-1588.	4.6	85
53	Rapid Oxidation of Arsenite in a Hot Spring Ecosystem, Yellowstone National Park. Environmental Science & amp; Technology, 2001, 35, 3302-3309.	4.6	184
54	Microbial Populations Associated with the Reduction and Enhanced Mobilization of Arsenic in Mine Tailings. Environmental Science & amp; Technology, 2001, 35, 3676-3682.	4.6	170

WILLIAM P INSKEEP

#	Article	IF	CITATIONS
55	Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environmental Microbiology, 2001, 3, 532-542.	1.8	179
56	Predicting Solute Transport Using Mappingâ€Unit Data: Model Simulations versus Observed Data at Four Field Sites. Journal of Environmental Quality, 2000, 29, 1939-1946.	1.0	6
57	Effect of Model Sorptive Phases on Phenanthrene Biodegradation: Different Enrichment Conditions Influence Bioavailability and Selection of Phenanthrene-Degrading Isolates. Applied and Environmental Microbiology, 2000, 66, 2695-2702.	1.4	71
58	Acid production from sulfide minerals using hydrogen peroxide weathering. Applied Geochemistry, 2000, 15, 235-243.	1.4	84
59	Rates of Microbially Mediated Arsenate Reduction and Solubilization. Soil Science Society of America Journal, 2000, 64, 600-608.	1.2	112
60	Microbial Reduction of Arsenate in the Presence of Ferrihydrite. Environmental Science & Technology, 2000, 34, 3131-3136.	4.6	154
61	Molecular Analysis of Surfactant-Driven Microbial Population Shifts in Hydrocarbon-Contaminated Soil. Applied and Environmental Microbiology, 2000, 66, 2959-2964.	1.4	93
62	Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil. Environmental Toxicology and Chemistry, 1999, 18, 1927-1931.	2.2	16
63	Nitrate Concentrations in the Root Zone Estimated Using Time Domain Reflectometry. Soil Science Society of America Journal, 1999, 63, 1561-1570.	1.2	28
64	EFFECTS OF A NONIONIC SURFACTANT ON BIODEGRADATION OF PHENANTHRENE AND HEXADECANE IN SOIL. Environmental Toxicology and Chemistry, 1999, 18, 1927.	2.2	1
65	Pore Water Velocity and Residence Time Effects on the Degradation of 2,4-D during Transport. Environmental Science & Technology, 1998, 32, 1308-1315.	4.6	31
66	Effects of Pore Water Velocity on the Transport of Arsenate. Environmental Science & Technology, 1997, 31, 704-709.	4.6	45
67	Effects of pH and Phosphate Competition on the Transport of Arsenate. Journal of Environmental Quality, 1997, 26, 1133-1139.	1.0	77
68	GISâ€Based Solute Transport Modeling Applications: Scale Effects of Soil and Climate Data Input. Journal of Environmental Quality, 1996, 25, 445-453.	1.0	34
69	Sorption of Nonionic Organic Compounds in Soil-Water Systems Containing a Micelle-Forming Surfactant. Environmental Science & Technology, 1995, 29, 903-913.	4.6	171
70	Fluorescence Lifetime Measurements of Fluoranthene, 1-Naphthol, and Napropamide in the Presence of Dissolved Humic Acid. Environmental Science & Technology, 1994, 28, 1582-1588.	4.6	59
71	Coupling Geographic Information Systems and Models for Weed Control and Groundwater Protection. Weed Technology, 1993, 7, 255-264.	0.4	29
72	Kinetics of octacalcium phosphate crystal growth in the presence of organic acids. Geochimica Et Cosmochimica Acta, 1992, 56, 1955-1961.	1.6	37

WILLIAM PINSKEEP

#	Article	IF	CITATIONS
73	Characterization of laboratory weathered labradorite surfaces using X-ray photoelectron spectroscopy and transmission electron microscopy. Geochimica Et Cosmochimica Acta, 1991, 55, 787-800.	1.6	66
74	Precipitation of Dicalcium Phosphate Dihydrate in the Presence of Organic Acids. Soil Science Society of America Journal, 1991, 55, 670-675.	1.2	106
75	Clomazone Dissipation in Two Montana Soils. Weed Technology, 1989, 3, 146-150.	0.4	24
76	Adsorption of Sulfate by Kaolinite and Amorphous Iron Oxide in the Presence of Organic Ligands. Journal of Environmental Quality, 1989, 18, 379-385.	1.0	64
77	Kinetics of hydroxyapatite precipitation at pH 7.4 to 8.4. Geochimica Et Cosmochimica Acta, 1988, 52, 1883-1893.	1.6	54
78	Inhibition of Hydroxyapatite Precipitation in the Presence of Fulvic, Humic, and Tannic Acids. Soil Science Society of America Journal, 1988, 52, 941-946.	1.2	112
79	Seedling Tolerance to Aluminum Toxicity in Hard Red Winter Wheat Germplasm. Crop Science, 1988, 28, 463-467.	0.8	49
80	Soil Chemical Factors Associated with Soybean Chlorosis in Calciaquolls of Western Minnesota 1. Agronomy Journal, 1987, 79, 779-786.	0.9	58
81	Effects of Soil Moisture on Soil <i>p</i> CO ₂ , Soil Solution Bicarbonate, and Iron Chlorosis in Soybeans. Soil Science Society of America Journal, 1986, 50, 946-952.	1.2	87
82	Kinetics of Calcite Precipitation in the Presence of Waterâ€soluble Organic Ligands. Soil Science Society of America Journal, 1986, 50, 1167-1172.	1.2	85
83	Calcium Carbonate Supersaturation in Soil Solutions of Calciaquolls. Soil Science Society of America Journal, 1986, 50, 1431-1437.	1.2	42
84	Factors affecting bicarbonate chemistry and iron chlorosis in soils. Journal of Plant Nutrition, 1986, 9, 215-228.	0.9	44
85	An evaluation of rate equations for calcite precipitation kinetics at less than 0.01 atm and pH greater than 8. Geochimica Et Cosmochimica Acta, 1985, 49, 2165-2180.	1.6	158
86	Extinction Coefficients of Chlorophyll <i>a</i> and <i>b</i> in <i>N,N</i> -Dimethylformamide and 80% Acetone. Plant Physiology, 1985, 77, 483-485.	2.3	1,276
87	Adsorption of Cd(II) and Cu(II) by Na-Montmorillonite at Low Surface Coverage. Soil Science Society of America Journal, 1983, 47, 660-665.	1.2	66
88	Competitive Complexation of Cd(II) and Cu(II) by Water-Soluble Organic Ligands and Na-Montmorillonite1. Soil Science Society of America Journal, 1983, 47, 1109.	1.2	35