

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4886559/publications.pdf Version: 2024-02-01

LIANNALEN

#	Article	IF	CITATIONS
1	Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chemistry of Materials, 2009, 21, 5674-5680.	6.7	476
2	Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano, 2010, 4, 5285-5292.	14.6	242
3	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 2010, 12, 2164.	2.8	176
4	Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thinâ€Film Transistors. Advanced Functional Materials, 2017, 27, 1604447.	14.9	147
5	Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts. Journal of the American Chemical Society, 2010, 132, 16747-16749.	13.7	119
6	A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry, 2009, 75, 44-49.	4.6	107
7	Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale, 2014, 6, 1589-1595.	5.6	107
8	Photoresponsive Transistors Based on Leadâ€Free Perovskite and Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 1906335.	14.9	84
9	Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices. ACS Applied Materials & Interfaces, 2019, 11, 12161-12169.	8.0	80
10	Electrical and Photoresponse Properties of Printed Thin-Film Transistors Based on Poly(9,9-dioctylfluorene- <i>co</i> -bithiophene) Sorted Large-Diameter Semiconducting Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 18243-18250.	3.1	76
11	Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. Nanoscale, 2014, 6, 14891-14897.	5.6	72
12	Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer. Carbon, 2016, 108, 372-380.	10.3	70
13	Effect of Surface Wettability Properties on the Electrical Properties of Printed Carbon Nanotube Thin-Film Transistors on SiO ₂ /Si Substrates. ACS Applied Materials & Interfaces, 2014, 6, 9997-10004.	8.0	55
14	Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nature Electronics, 2020, 3, 622-629.	26.0	53
15	Flexible CMOSâ€Like Circuits Based on Printed Pâ€Type and Nâ€Type Carbon Nanotube Thinâ€Film Transistors. Small, 2016, 12, 5066-5073.	10.0	51
16	High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale, 2013, 5, 4156.	5.6	49
17	Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection. Journal of Materials Chemistry, 2008, 18, 2459.	6.7	45
18	Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer. Nanoscale, 2016, 8, 4588-4598.	5.6	44

Jianwen

#	Article	IF	CITATIONS
19	Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. Journal of Materials Chemistry, 2012, 22, 20747.	6.7	41
20	Selective Conversion from p-Type to n-Type of Printed Bottom-Gate Carbon Nanotube Thin-Film Transistors and Application in Complementary Metal–Oxide–Semiconductor Inverters. ACS Applied Materials & Interfaces, 2017, 9, 12750-12758.	8.0	41
21	Large-Area Flexible Printed Thin-Film Transistors with Semiconducting Single-Walled Carbon Nanotubes for NO ₂ Sensors. ACS Applied Materials & Interfaces, 2020, 12, 51797-51807.	8.0	41
22	A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta, 2003, 59, 935-941.	5.5	39
23	Printed thin-film transistors with functionalized single-walled carbon nanotube inks. Journal of Materials Chemistry, 2012, 22, 2051-2056.	6.7	39
24	Substituent effects in twisted dibenzotetracene derivatives: Blue emitting materials for organic light-emitting diodes. Dyes and Pigments, 2015, 112, 176-182.	3.7	39
25	Non-enzymatic glucose detection using as-prepared boron-doped diamond thin-film electrodes. Analyst, The, 2009, 134, 794.	3.5	37
26	Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon, 2015, 94, 903-910.	10.3	36
27	Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon, 2021, 176, 592-601.	10.3	35
28	Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. Chemical Communications, 2009, , 7182.	4.1	33
29	Synthesis, Crystal Analyses, Physical Properties, and Electroluminescent Behavior of Unsymmetrical Heterotwistacenes. ACS Applied Materials & Interfaces, 2016, 8, 18998-19003.	8.0	33
30	High-performance metal-oxide thin-film transistors based on inkjet-printed self-confined bilayer heterojunction channels. Journal of Materials Chemistry C, 2019, 7, 6169-6177.	5.5	31
31	Air-stable N-type printed carbon nanotube thin film transistors for CMOS logic circuits. Carbon, 2020, 163, 145-153.	10.3	31
32	Ambipolar Deep-Subthreshold Printed-Carbon-Nanotube Transistors for Ultralow-Voltage and Ultralow-Power Electronics. ACS Nano, 2020, 14, 14036-14046.	14.6	30
33	A TSM immunosensor for detection of M. tuberculosis with a new membrane material. Sensors and Actuators B: Chemical, 2002, 85, 284-290.	7.8	29
34	Overcoming Electrochemical Instabilities of Printed Silver Electrodes in All-Printed Ion Gel Gated Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 41531-41543.	8.0	27
35	Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage. Nanoscale, 2018, 10, 614-622.	5.6	23
36	Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes by Functionalized Conjugated Dendritic Oligothiophenes for Use in Printed Thin Film Transistors. Advanced Functional Materials, 2017, 27, 1703938.	14.9	22

JIANWEN

#	Article	IF	CITATIONS
37	Polarity tuning of carbon nanotube transistors by chemical doping for printed flexible complementary metal-oxide semiconductor (CMOS)-like inverters. Carbon, 2019, 147, 566-573.	10.3	22
38	High-performance flexible fully-printed all-carbon thin film transistors and ultrasensitive NH ₃ sensors. Journal of Materials Chemistry C, 2021, 9, 2133-2144.	5.5	21
39	Printed solid state electrolyte carbon nanotube thin film transistors for sub-1 V fully printed flexible CMOS inverters. Journal of Materials Chemistry C, 2021, 9, 6852-6862.	5.5	21
40	A Tyrosinase Biosensor Based on ZnO Nanorod Clusters/ Nanocrystalline Diamond Electrodes for Biosensing of Phenolic Compounds. Analytical Sciences, 2009, 25, 1083-1088.	1.6	20
41	Rapidly determining E. coli and P. aeruginosa by an eight channels bulk acoustic wave impedance physical biosensor. Sensors and Actuators B: Chemical, 2005, 107, 271-276.	7.8	18
42	A Universal Method for Highâ€Efficiency Immobilization of Semiconducting Carbon Nanotubes toward Fully Printed Paperâ€Based Electronics. Advanced Electronic Materials, 2021, 7, 2001025.	5.1	18
43	Highly flexible printed carbon nanotube thin film transistors using cross-linked poly(4-vinylphenol) as the gate dielectric and application for photosenstive light-emitting diode circuit. Carbon, 2018, 133, 390-397.	10.3	17
44	A direct electrochemical method for diabetes diagnosis based on as-prepared boron-doped nanocrystalline diamond thin film electrodes. Journal of Electroanalytical Chemistry, 2009, 626, 98-102.	3.8	16
45	Synthesis, Crystal Structures, Optical Properties, and Photocurrent Response of Heteroacene Derivatives. Chemistry - an Asian Journal, 2014, 9, 1943-1949.	3.3	16
46	Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flexible and Printed Electronics, 2021, 6, 034001.	2.7	16
47	Highly sensitive and selective H2S sensors with ultra-low power consumption based on flexible printed carbon-nanotube-thin-film-transistors. Sensors and Actuators B: Chemical, 2022, 360, 131633.	7.8	16
48	Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 6975-6979.	3.1	15
49	Synthesis, characterization and photocurrent behavior of asymmetrical heterotwistacenes. Dyes and Pigments, 2015, 115, 143-148.	3.7	15
50	High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure. ACS Applied Materials & Interfaces, 2018, 10, 15847-15854.	8.0	14
51	Radiation-Hard and Repairable Complementary Metal–Oxide–Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 49963-49970.	8.0	14
52	Printed carbon nanotube thin film transistors based on perhydropolysilazane-derived dielectrics for low power flexible electronics. Carbon, 2022, 191, 267-276.	10.3	14
53	Large-area (64 × 64 array) inkjet-printed high-performance metal oxide bilayer heterojunction thin film transistors and n-metal-oxide-semiconductor (NMOS) inverters. Journal of Materials Science and Technology, 2021, 81, 26-35.	10.7	13
54	Deposition of silver nanoleaf film onto chemical vapor deposited diamond substrate and its application in surface-enhanced Raman scattering. Thin Solid Films, 2008, 516, 4047-4052.	1.8	12

Jianwen

#	Article	IF	CITATIONS
55	Preparation of grain size controlled boron-doped diamond thin films and their applications in selective detection of glucose in basic solutions. Science China Chemistry, 2010, 53, 1378-1384.	8.2	12
56	Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate. Journal of Materials Science, 2014, 49, 2054-2062.	3.7	11
57	Twistacene functionalized anthracenes with high-efficiency blue fluorescence. Dyes and Pigments, 2016, 125, 356-361.	3.7	11
58	Highâ€Performance Partially Printed Hybrid CMOS Inverters Based on Indiumâ€Zincâ€Oxide and Chirality Enriched Carbon Nanotube Thinâ€Film Transistors. Advanced Electronic Materials, 2019, 5, 1900034.	5.1	11
59	Optically and electrically modulated printed carbon nanotube synaptic transistors with a single input terminal and multi-functional output characteristics. Journal of Materials Chemistry C, 2020, 8, 6914-6922.	5.5	11
60	Electroless deposition of copper and fabrication of copper micropatterns on CVD diamond film surfaces. Applied Surface Science, 2008, 254, 3282-3287.	6.1	10
61	Ambipolar carbon nanotube transistors with hybrid nanodielectric for low-voltage CMOS-like electronics. Nano Futures, 2021, 5, 025001.	2.2	10
62	Simultaneous determinations of paeonol and palmatine hydrochloride in Shangshi Aerosols by HPLC method. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 571-575.	2.8	9
63	Surface-Enhanced Raman Scattering of 4-Aminothiophenol Adsorbed on Silver Nanosheets Deposited onto Cubic Boron Nitride Films. Analytical Sciences, 2010, 26, 957-961.	1.6	9
64	Layerâ€Byâ€Layer Printing Strategy for Highâ€Performance Flexible Electronic Devices with Lowâ€Temperature Catalyzed Solutionâ€Processed SiO 2. Small Methods, 2021, 5, 2100263.	8.6	8
65	Preparation of large-area, high-performance single-walled carbon nanotube (SWCNT)-based heater films by roll-to-roll gravure printing. Flexible and Printed Electronics, 2022, 7, 015007.	2.7	7
66	Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes. Nano Research, 2022, 15, 5517-5526.	10.4	7
67	Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates. Nanoscale, 2022, 14, 4679-4689.	5.6	6
68	High yield fabrication of semiconducting thin-film field-effect transistors based on chemically functionalized single-walled carbon nanotubes. Science China Chemistry, 2011, 54, 1484-1490.	8.2	5
69	Monolithic Heterogeneous Integration of BEOL Power Gating Transistors of Carbon Nanotube Networks with FEOL Si Ring Oscillator Circuits. , 2019, , .		5
70	Development of a Validated HPLC Method for Analysis of Astragaloside II, Paeonol, and Osthole in Snake Wine. Chromatographia, 2005, 62, 543-546.	1.3	2
71	Printed carbon nanotube devices and their applications. , 2012, , .		2
72	66â€2: Printed Carbon Nanotube Thinâ€film Transistors and Application in OLED Backplane Circuits. Digest of Technical Papers SID International Symposium, 2017, 48, 968-971.	0.3	2

#	ARTICLE	IF	CITATIONS
73	Printed thin-film transistors and circuits based on sorted semiconducting single-walled carbon nanotubes. , 2016, , .		0
74	43.1: <i>Invited Paper:</i> Largeâ€area and highâ€performance printed carbon nanotube and metal oxide thin film transistors and their applications. Digest of Technical Papers SID International Symposium, 2019, 50, 483-484.	0.3	0
75	Room-temperature printing of CNTs-based flexible TFTs with high performance. , 2019, , .		0
76	Layerâ€Byâ€Layer Printing Strategy for Highâ€Performance Flexible Electronic Devices with Lowâ€Temperature Catalyzed Solutionâ€Processed SiO ₂ (Small Methods 8/2021). Small Methods, 2021, 5, 2170038.	8.6	0