
## Zi-Gang Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4886116/publications.pdf Version: 2024-02-01



71-CANC GE

| #  | Article                                                                                                                                                                                                  | IF          | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 1  | Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioactive Materials, 2022, 9, 332-342.    | 8.6         | 27             |
| 2  | Nanosecond pulsed electric fields prime mesenchymal stem cells to peptide ghrelin and enhance<br>chondrogenesis and osteochondral defect repair in vivo. Science China Life Sciences, 2022, 65, 927-939. | 2.3         | 7              |
| 3  | Macrophages promote cartilage regeneration in a time―and phenotypeâ€dependent manner. Journal of<br>Cellular Physiology, 2022, 237, 2258-2270.                                                           | 2.0         | 9              |
| 4  | Rational design of electrically conductive biomaterials toward excitable tissues regeneration.<br>Progress in Polymer Science, 2022, 131, 101573.                                                        | 11.8        | 21             |
| 5  | Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioactive Materials, 2021, 6, 1689-1698.                                | 8.6         | 107            |
| 6  | Can Upregulation of Pluripotency Genes Enhance Stemness of Mesenchymal Stem Cells?. Stem Cell<br>Reviews and Reports, 2021, 17, 1505-1507.                                                               | 1.7         | 3              |
| 7  | Nanosecond pulsed electric fields enhance mesenchymal stem cells differentiation via<br>DNMT1-regulated OCT4/NANOG gene expression. Stem Cell Research and Therapy, 2020, 11, 308.                       | 2.4         | 17             |
|    | Multiple nanosecond pulsed electric fields stimulation with conductive poly( <scp>l</scp> â€lactic) Tj ETQq0 0 0                                                                                         | ) rgBT /Ove | erlock 10 Tf 5 |
| 8  | prolonged in vitro culture. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14,<br>1136-1148.                                                                                             | 1.3         | 6              |
| 9  | Diverse effects of pulsed electrical stimulation on cells - with a focus on chondrocytes and cartilage regeneration. , 2019, 38, 79-93.                                                                  |             | 20             |
| 10 | Nanosecond pulsed electric fields enhanced chondrogenic potential of mesenchymal stem cells via<br>JNK/CREB-STAT3 signaling pathway. Stem Cell Research and Therapy, 2019, 10, 45.                       | 2.4         | 26             |
| 11 | Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Science Translational Medicine, 2019, 11, .                                                        | 5.8         | 79             |
| 12 | Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin. Journal of Orthopaedic Research, 2019, 37, 1387-1397.                                         | 1.2         | 18             |
| 13 | TGF-β1 affinity peptides incorporated within a chitosan sponge scaffold can significantly enhance cartilage regeneration. Journal of Materials Chemistry B, 2018, 6, 675-687.                            | 2.9         | 28             |
| 14 | Preconditioning of mesenchymal stromal cells toward nucleus pulposus-like cells by<br>microcryogels-based 3D cell culture and syringe-based pressure loading system. , 2017, 105, 507-520.               |             | 17             |
| 15 | Biological effect and molecular mechanism study of biomaterials based on proteomic research.<br>Journal of Materials Science and Technology, 2017, 33, 607-615.                                          | 5.6         | 9              |
| 16 | Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. Materials Science and Engineering C, 2016, 69, 522-531.                                                                        | 3.8         | 9              |
| 17 | Physically entrapped gelatin in polyethylene glycol scaffolds for three-dimensional chondrocyte culture. Journal of Bioactive and Compatible Polymers, 2016, 31, 513-530.                                | 0.8         | 6              |
| 18 | Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage<br>regeneration. Biomedical Materials (Bristol), 2016, 11, 035014.                                           | 1.7         | 20             |

ZI-GANG GE

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Perspectives on Animal Models Utilized for the Research and Development of Regenerative Therapies<br>for Articular Cartilage. Current Molecular Biology Reports, 2016, 2, 90-100.                           | 0.8 | 10        |
| 20 | Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of<br>mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials, 2015, 38,<br>72-85. | 5.7 | 96        |
| 21 | A simple magnetic force-based cell patterning method using soft lithography. Science China Life<br>Sciences, 2015, 58, 400-402.                                                                             | 2.3 | 0         |
| 22 | Probing cell–matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for<br>3D chondrocyte culture. Biomedical Materials (Bristol), 2015, 10, 035016.                             | 1.7 | 19        |
| 23 | Optimization and characterization of chemically modified polymer microspheres and their effect on cell behavior. Materials Letters, 2015, 154, 68-72.                                                       | 1.3 | 10        |
| 24 | Biomaterials for Cartilage Regeneration. Journal of the American Academy of Orthopaedic Surgeons,<br>The, 2014, 22, 674-676.                                                                                | 1.1 | 4         |
| 25 | The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells. Biomedical Materials (Bristol), 2014, 9, 035011.                                                        | 1.7 | 36        |
| 26 | Effects of fluctuant magnesium concentration on phenotype of the primary chondrocytes. Journal of<br>Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.                                            | 2.1 | 13        |
| 27 | Optimization of dual effects of Mg–1Ca alloys on the behavior of chondrocytes and osteoblasts in vitro. Progress in Natural Science: Materials International, 2014, 24, 433-440.                            | 1.8 | 2         |
| 28 | Nanosecond Pulsed Electric Fields (nsPEFs) Regulate Phenotypes of Chondrocytes through<br>Wnt/β-catenin Signaling Pathway. Scientific Reports, 2014, 4, 5836.                                               | 1.6 | 32        |
| 29 | Title is missing!. Journal of Medical and Biological Engineering, 2014, 34, 130.                                                                                                                            | 1.0 | 2         |
| 30 | Protocol of Chondrogenesis of BMSC to Chondrocyte Using Chitosan-Modified<br>Poly(L-Lactide-co-Îμ-Caprolactone) Scaffolds. Manuals in Biomedical Research, 2014, , 49-58.                                   | 0.0 | 0         |
| 31 | Plasma and synovial fluid programmed cell death 5 (PDCD5) levels are inversely associated with TNF-α<br>and disease activity in patients with rheumatoid arthritis. Biomarkers, 2013, 18, 155-159.          | 0.9 | 20        |
| 32 | Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe.<br>Nanoscale, 2013, 5, 11954.                                                                                 | 2.8 | 45        |
| 33 | Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate)<br>microspheres for cartilage regeneration. Biomedical Materials (Bristol), 2013, 8, 025005.         | 1.7 | 28        |
| 34 | Cells Behave Distinctly Within Sponges and Hydrogels Due to Differences of Internal Structure.<br>Tissue Engineering - Part A, 2013, 19, 2166-2175.                                                         | 1.6 | 37        |
| 35 | RELATIONSHIP BETWEEN CELL FUNCTION AND INITIAL CELL SEEDING DENSITY OF PRIMARY PORCINE CHONDROCYTES <i>IN VITRO</i> . Biomedical Engineering - Applications, Basis and Communications, 2013, 25, 1340001.   | 0.3 | 6         |
| 36 | Title is missing!. Journal of Medical and Biological Engineering, 2013, 33, 518.                                                                                                                            | 1.0 | 4         |

ZI-GANG GE

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Title is missing!. Journal of Medical and Biological Engineering, 2013, 33, 449.                                                                                                                                                                                      | 1.0 | 1         |
| 38 | A Viscoelastic Chitosan-Modified Three-Dimensional Porous Poly(L-Lactide-co-Îμ-Caprolactone) Scaffold<br>for Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 405-424.                                                       | 1.9 | 55        |
| 39 | Functional biomaterials for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2526-2536.                                                                                                                                         | 2.1 | 79        |
| 40 | Cytotoxicity of core-shell polystyrene magnetic beads and related mechanisms. Molecular and Cellular Toxicology, 2012, 8, 217-227.                                                                                                                                    | 0.8 | 5         |
| 41 | Improved Mesenchymal Stem Cells Attachment and <i>In Vitro</i> Cartilage Tissue Formation on<br>Chitosan-Modified Poly( <scp> </scp> -Lactide- <i>co</i> -Epsilon-Caprolactone) Scaffold. Tissue<br>Engineering - Part A, 2012, 18, 242-251.                          | 1.6 | 79        |
| 42 | High-throughput immunoassay through in-channel microfluidic patterning. Lab on A Chip, 2012, 12,<br>2487.                                                                                                                                                             | 3.1 | 47        |
| 43 | Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity.<br>Chinese Medical Journal, 2011, 124, 4245-53.                                                                                                                       | 0.9 | 9         |
| 44 | A Biocompatible Chitosan Composite Containing Phosphotungstic Acid Modified Single-Walled Carbon<br>Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 7126-7129.                                                                                        | 0.9 | 10        |
| 45 | Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan<br>Composites. Biomacromolecules, 2010, 11, 2345-2351.                                                                                                                       | 2.6 | 514       |
| 46 | Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible<br>alternative to induced pluripotent stem (iPS) cells?. Journal of Tissue Engineering and Regenerative<br>Medicine, 2010, 4, 159-162.                               | 1.3 | 7         |
| 47 | ORIGINAL ARTICLE: Solubilization of vorinostat by cyclodextrins. Journal of Clinical Pharmacy and Therapeutics, 2010, 35, 521-526.                                                                                                                                    | 0.7 | 33        |
| 48 | Proliferation and Differentiation of Human Osteoblasts within 3D printed Poly-Lactic-co-Glycolic<br>Acid Scaffolds. Journal of Biomaterials Applications, 2009, 23, 533-547.                                                                                          | 1.2 | 62        |
| 49 | Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in<br>a rabbit model. Biomedical Materials (Bristol), 2009, 4, 021001.                                                                                            | 1.7 | 85        |
| 50 | Manufacture of degradable polymeric scaffolds for bone regeneration. Biomedical Materials<br>(Bristol), 2008, 3, 022001.                                                                                                                                              | 1.7 | 67        |
| 51 | Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems.<br>Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 58-67.                                                                                         | 0.6 | 88        |
| 52 | Modification of sericin-free silk fibers for ligament tissue engineering application. Journal of<br>Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 129-138.                                                                                  | 1.6 | 85        |
| 53 | Mechanical dissociation of human embryonic stem cell colonies by manual scraping after collagenase<br>treatment is much more detrimental to cellular viability than is trypsinization with gentle pipetting.<br>Biotechnology and Applied Biochemistry, 2007, 47, 33. | 1.4 | 20        |
| 54 | Repair of Large Articular Osteochondral Defects Using Hybrid Scaffolds and Bone Marrow-Derived<br>Mesenchymal Stem Cells in a Rabbit Model. Tissue Engineering, 2006, 12, 1539-1551.                                                                                  | 4.9 | 181       |

ZI-GANG GE

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Efficacy of Bone Marrow–Derived Stem Cells in Strengthening Osteoporotic Bone in a Rabbit Model.<br>Tissue Engineering, 2006, 12, 1753-1761.                                                                                                              | 4.9 | 119       |
| 56 | Loss of viability during freeze–thaw of intact and adherent human embryonic stem cells with<br>conventional slow-cooling protocols is predominantly due toâ£apoptosis rather than cellular<br>necrosis. Journal of Biomedical Science, 2006, 13, 433-445. | 2.6 | 108       |
| 57 | Osteoarthritis and therapy. Arthritis and Rheumatism, 2006, 55, 493-500.                                                                                                                                                                                  | 6.7 | 98        |
| 58 | Biomaterials and scaffolds for ligament tissue engineering. Journal of Biomedical Materials Research -<br>Part A, 2006, 77A, 639-652.                                                                                                                     | 2.1 | 123       |
| 59 | The Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Fascia Wrap Application to Anterior Cruciate Ligament Tissue Engineering. Cell Transplantation, 2005, 14, 763-773.                                                                          | 1.2 | 65        |
| 60 | Selection of Cell Source for Ligament Tissue Engineering. Cell Transplantation, 2005, 14, 573-583.                                                                                                                                                        | 1.2 | 103       |
| 61 | Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.<br>Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1179-1192.                                                                               | 1.9 | 36        |
| 62 | Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004,<br>25, 1049-1058.                                                                                                                                    | 5.7 | 141       |