
Ludovic Vial

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/488573/publications.pdf Version: 2024-02-01

Ιπολις Λινι

#	Article	IF	CITATIONS
1	Evolutionary classification of tumor- and root-inducing plasmids based on T-DNAs and virulence regions. Molecular Phylogenetics and Evolution, 2022, 169, 107388.	2.7	5
2	Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. Nucleic Acids Research, 2021, 49, 529-546.	14.5	15
3	Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov Frontiers in Microbiology, 2021, 12, 765943.	3.5	22
4	Characterization and phylogenetic diversity of <i>Allorhizobium vitis</i> isolated from grapevine in Morocco. Journal of Applied Microbiology, 2020, 128, 828-839.	3.1	4
5	Plasmidâ€chromosome crossâ€ŧalks. Environmental Microbiology, 2020, 22, 540-556.	3.8	46
6	<i>Agrobacterium fabrum</i> C58 involved nitrate reductase NapA and antisense RNA NorR to denitrify. FEMS Microbiology Ecology, 2020, 97, .	2.7	3
7	Import pathways of the mannityl-opines into the bacterial pathogen <i>Agrobacterium tumefaciens</i> : structural, affinity and <i>in vivo</i> approaches. Biochemical Journal, 2020, 477, 615-628.	3.7	0
8	Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. Frontiers in Plant Science, 2019, 10, 978.	3.6	11
9	A novel plasmidâ€ŧranscribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in <i>Agrobacterium fabrum</i> . Environmental Microbiology, 2019, 21, 3063-3075.	3.8	9
10	Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not <i>In Planta</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	6
11	Regulation of Hydroxycinnamic Acid Degradation Drives <i>Agrobacterium fabrum</i> Lifestyles. Molecular Plant-Microbe Interactions, 2018, 31, 814-822.	2.6	14
12	Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis. Environmental Science and Pollution Research, 2018, 25, 29943-29952.	5.3	22
13	The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum. Journal of Biological Chemistry, 2018, 293, 7930-7941.	3.4	18
14	Ancestral Genome Estimation Reveals the History of Ecological Diversification in Agrobacterium. Genome Biology and Evolution, 2017, 9, 3413-3431.	2.5	31
15	Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and N-Acyl-Homoserine Lactone Signaling in a Burkholderia cepacia Complex Clinical Strain. Frontiers in Microbiology, 2017, 8, 1021.	3.5	24
16	Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum. Applied and Environmental Microbiology, 2016, 82, 3515-3524.	3.1	12
17	Cell–Cell Communication in Azospirillum and Related PGPR. , 2015, , 263-285.		2
18	Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58. Molecular Plant-Microbe Interactions, 2015, 28, 580-589.	2.6	28

LUDOVIC VIAL

#	Article	IF	CITATIONS
19	Analysis of Hydroxycinnamic Acid Degradation in Agrobacterium fabrum Reveals a Coenzyme A-Dependent, Beta-Oxidative Deacetylation Pathway. Applied and Environmental Microbiology, 2014, 80, 3341-3349.	3.1	35
20	Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov Systematic and Applied Microbiology, 2014, 37, 208-215.	2.8	205
21	Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Molecular Phylogenetics and Evolution, 2014, 73, 202-207.	2.7	44
22	Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Systematic and Applied Microbiology, 2013, 36, 351-358.	2.8	33
23	Identification of quorum sensingâ€controlled genes in <i><scp>B</scp>urkholderia ambifaria</i> . MicrobiologyOpen, 2013, 2, 226-242.	3.0	39
24	Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens. Genome Biology and Evolution, 2011, 3, 762-781.	2.5	110
25	The various lifestyles of the <i>Burkholderia cepacia</i> complex species: a tribute to adaptation. Environmental Microbiology, 2011, 13, 1-12.	3.8	151
26	Phase variation has a role in <i>Burkholderia ambifaria</i> niche adaptation. ISME Journal, 2010, 4, 49-60.	9.8	35
27	Drosophila melanogaster as a Model Host for the Burkholderia cepacia Complex. PLoS ONE, 2010, 5, e11467.	2.5	32
28	Phase and antigenic variation mediated by genome modifications. Antonie Van Leeuwenhoek, 2008, 94, 493-515.	1.7	69
29	Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiology Ecology, 2008, 65, 202-219.	2.7	78
30	The Fruit Fly as a Meeting Place for Microbes. Cell Host and Microbe, 2008, 4, 505-507.	11.0	5
31	<i>Burkholderia pseudomallei</i> , <i>B. thailandensis</i> , and <i>B. ambifaria</i> Produce 4-Hydroxy-2-Alkylquinoline Analogues with a Methyl Group at the 3 Position That Is Required for Quorum-Sensing Regulation. Journal of Bacteriology, 2008, 190, 5339-5352.	2.2	128
32	Burkholderia diversity and versatility: an inventory of the extracellular products. Journal of Microbiology and Biotechnology, 2007, 17, 1407-29.	2.1	75
33	Phase Variation and Genomic Architecture Changes in Azospirillum. Journal of Bacteriology, 2006, 188, 5364-5373.	2.2	57
34	N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiology Ecology, 2006, 58, 155-168.	2.7	42
35	Automatic quantitation of vacuolar lesions in the brain of mice infected with transmissible spongiform encephalopathies. Journal of Virological Methods, 2005, 124, 197-202.	2.1	9
36	Construction of a recA mutant of Azospirillum lipoferum and involvement of recA in phase variation⋆. FEMS Microbiology Letters, 2004, 236, 291-299.	1.8	9

8

#	Article	IF	CITATIONS
37	Construction of a recA mutant of Azospirillum lipoferum and involvement of recA in phase variation*1. FEMS Microbiology Letters, 2004, 236, 291-299.	1.8	9

Rapid and Efficient Methods to Isolate, Type Strains and Determine Species of Agrobacterium spp. in Pure Culture and Complex Environments. , 0, , .