
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4885726/publications.pdf Version: 2024-02-01

MICHAL HÄHEK

#	Article	IF	CITATIONS
1	Rising temperature modulates pH niches of fen species. Global Change Biology, 2022, 28, 1023-1037.	9.5	18
2	The long history of rich fens supports persistence of plant and snail habitat specialists. Biodiversity and Conservation, 2022, 31, 39-57.	2.6	6
3	Distribution maps of vegetation alliances in Europe. Applied Vegetation Science, 2022, 25, .	1.9	23
4	Classification of European bog vegetation of the <i>Oxycoccoâ€6phagnetea</i> class. Applied Vegetation Science, 2022, 25, .	1.9	5
5	Insularity promotes plant persistence strategies in edaphic island systems. Global Ecology and Biogeography, 2022, 31, 753-764.	5.8	10
6	Can <i>Sphagnum</i> removal reverse the undesired succession of rich fens under different alkalinity and fertility levels?. Ecological Applications, 2022, 32, .	3.8	4
7	Conservation and restoration of Central European fens by mowing: A consensus from 20†years of experimental work. Science of the Total Environment, 2022, , 157293.	8.0	4
8	Ecology of testate amoebae along an environmental gradient from bogs to calcareous fens in East-Central Europe: development of transfer functions for palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111145.	2.3	3
9	High fungal substrate specificity limits the utility of environmental DNA to detect fungal diversity in bogs. Ecological Indicators, 2021, 121, 107009.	6.3	4
10	Restoration of rare bryophytes in degraded rich fens: The effect of sod-and-moss removal. Journal for Nature Conservation, 2021, 59, 125928.	1.8	12
11	Environmental drivers of <i>Sphagnum</i> growth in peatlands across the Holarctic region. Journal of Ecology, 2021, 109, 417-431.	4.0	32
12	A European map of groundwater pH and calcium. Earth System Science Data, 2021, 13, 1089-1105.	9.9	24
13	CLINICAL USE OF HYPERBARIC OXYGEN IN DIABETIC FOOT SYNDROME AND OTHER DIFFICULT-TO-HEAL WOUNDS. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2021, 90, 33-42.	0.5	0
14	Syntaxonomy and biogeography of the Iranoâ€Turanian mires and springs. Applied Vegetation Science, 2021, 24, e12571.	1.9	5
15	Scale dependence of species–area relationships is widespread but generally weak in Palaearctic grasslands. Journal of Vegetation Science, 2021, 32, e13044.	2.2	8
16	What defines insularity for plants in edaphic islands?. Ecography, 2021, 44, 1249-1258.	4.5	17
17	Drepanocladus lycopodioides rediscovered in the Czech Republic: Abandoned quarries as refugia for endangered fen species. Aquatic Botany, 2021, 172, 103380.	1.6	0
18	Spring water table depth mediates withinâ€site variation of soil temperature in groundwaterâ€fed mires. Hydrological Processes, 2021, 35, e14293.	2.6	8

#	Article	IF	CITATIONS
19	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
20	Land snail community patterns related to regional habitat conservation status of European spring fens. Science of the Total Environment, 2021, 783, 146910.	8.0	3
21	Variability and classification of Carpathian calcium-rich fens. Preslia, 2021, 93, 203-235.	2.8	4
22	The Last Glacial and Holocene history of mountain woodlands in the southern part of the Western Carpathians, with emphasis on the spread ofFagus sylvatica. Palynology, 2020, 44, 709-722.	1.5	3
23	Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Science of the Total Environment, 2020, 719, 134693.	8.0	22
24	EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 2020, 23, 648-675.	1.9	186
25	A novel dataset of permanent plots in extremely species-rich temperate grasslands. Folia Geobotanica, 2020, 55, 257-268.	0.9	4
26	Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 2020, 116, 106527.	6.3	11
27	Can relict-rich communities be of an anthropogenic origin? Palaeoecological insight into conservation strategy for endangered Carpathian travertine fens. Quaternary Science Reviews, 2020, 234, 106241.	3.0	10
28	Linking Plant Functional Ecology to Island Biogeography. Trends in Plant Science, 2020, 25, 329-339.	8.8	70
29	Abrupt vegetation and environmental change since the MIS 2: A unique paleorecord from Slovakia (Central Europe). Quaternary Science Reviews, 2020, 230, 106170.	3.0	5
30	Holocene matters: Landscape history accounts for current species richness of vascular plants in forests and grasslands of eastern Central Europe. Journal of Biogeography, 2020, 47, 721-735.	3.0	14
31	Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water (Switzerland), 2020, 12, 260.	2.7	117
32	Is variable plot size a serious constraint in broadâ€scale vegetation studies? A case study on fens. Journal of Vegetation Science, 2020, 31, 594-605.	2.2	11
33	Soil moisture and a legacy of prehistoric human activities have contributed to the extraordinary plant species diversity of grasslands in the White Carpathians. Preslia, 2020, 92, 35-56.	2.8	8
34	Vegetation affinity of the moss species Meesia triquetra, Paludella squarrosa, Pseudocalliergon trifarium and Scorpidium scorpioides across European regions. Nova Hedwigia, 2020, 150, 133-158.	0.2	5
35	Western-Carpathian mountain spruce woodlands at their southern margin. Preslia, 2020, 92, .	2.8	3
36	A modern analogue of the Pleistocene steppeâ€ŧundra ecosystem in southern Siberia. Boreas, 2019, 48, 36-56.	2.4	44

#	Article	IF	CITATIONS
37	Spruce representation in zonal woodlands may be overestimated when using pollen spectra from peatlands. Review of Palaeobotany and Palynology, 2019, 271, 104104.	1.5	5
38	Landslides increased Holocene habitat diversity on a flysch bedrock in the Western Carpathians. Quaternary Science Reviews, 2019, 219, 68-83.	3.0	17
39	<i>In situ</i> detection of stability limit of ω phase in Ti–15Mo alloy during heating. Journal of Applied Crystallography, 2019, 52, 1061-1071.	4.5	7
40	The ratio between bryophyte functional groups impacts vascular plants in rich fens. Applied Vegetation Science, 2019, 22, 494-507.	1.9	25
41	Red List of Habitats of the Czech Republic. Ecological Indicators, 2019, 106, 105446.	6.3	33
42	Soil charcoal elucidates the role of humans in the development of landscape of extreme biodiversity. Land Degradation and Development, 2019, 30, 1607-1619.	3.9	12
43	Genetic and morphological variation in the circumpolar distribution range of <i>Sphagnum warnstorfii</i> : indications of vicariant divergence in a common peatmoss. Botanical Journal of the Linnean Society, 2019, 189, 408-423.	1.6	8
44	Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure. Journal of Alloys and Compounds, 2019, 788, 881-890.	5.5	13
45	A complete Holocene climate and environment record for the Western Carpathians (Slovakia) derived from a tufa deposit. Holocene, 2019, 29, 493-504.	1.7	28
46	Pre-industrial composition of woodlands and modern deforestation events in the southern part of the Western Carpathians. Review of Palaeobotany and Palynology, 2019, 260, 1-15.	1.5	7
47	The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. Journal of Ecology, 2019, 107, 1038-1050.	4.0	23
48	Gradients, species richness and biogeographical links of steppe grasslands in Western Podolia (Ukraine). Phytocoenologia, 2019, 49, 349-367.	0.5	6
49	GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands. , 2019, , 26-47.		15
50	Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Science of the Total Environment, 2018, 634, 355-365.	8.0	31
51	Holocene vegetation history of the JesenÃky Mts: Deepening elevational contrast in pollen assemblages since late prehistory. Journal of Vegetation Science, 2018, 29, 371-381.	2.2	12
52	Principal factors controlling the species richness of European fens differ between habitat specialists and matrixâ€derived species. Diversity and Distributions, 2018, 24, 742-754.	4.1	44
53	Modelling the distribution and compositional variation of plant communities at the continental scale. Diversity and Distributions, 2018, 24, 978-990.	4.1	37
54	Evolution of ï‰ phase during heating of metastable β titanium alloy Ti–15Mo. Journal of Materials Science, 2018, 53, 837-845.	3.7	35

#	Article	IF	CITATIONS
55	Persistence of a vegetation mosaic in a peripheral region: could turbulent medieval history disrupt Holocene continuity of extremely species-rich grasslands?. Vegetation History and Archaeobotany, 2018, 27, 591-610.	2.1	13
56	GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 2018, 48, 331-347.	0.5	49
57	Environmental and taxonomic controls of carbon and oxygen stable isotope composition in <i>Sphagnum</i> across broad climatic and geographic ranges. Biogeosciences, 2018, 15, 5189-5202.	3.3	25
58	Introduction to this special issue on the ecology and evolution of the Carpathian flora. Folia Geobotanica, 2018, 53, 241-242.	0.9	0
59	Holocene development of two calcareous spring fens at the Carpathian-Pannonian interface controlled by climate and human impact. Folia Geobotanica, 2018, 53, 243-263.	0.9	19
60	Relict occurrences of boreal brown-moss quaking rich fens in the Carpathians and adjacent territories. Folia Geobotanica, 2018, 53, 265-276.	0.9	6
61	Glacial-relict symptoms in the Western Carpathian flora. Folia Geobotanica, 2018, 53, 277-300.	0.9	34
62	Using a new database of plant macrofossils of the Czech and Slovak Republics to compare past and present distribution of hypothetically relict fen mosses. Preslia, 2018, 90, 367-386.	2.8	15
63	Long-lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species-rich Grassland: A Battle of Species Pools on Mesic Soils. Ecosystems, 2017, 20, 1233-1249.	3.4	17
64	Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecological Indicators, 2017, 77, 357-367.	6.3	22
65	Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry, 2017, 111, 94-103.	8.8	130
66	Pollenâ€inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. Journal of Biogeography, 2017, 44, 2386-2397.	3.0	49
67	Sphagnum establishment in alkaline fens: Importance of weather and water chemistry. Science of the Total Environment, 2017, 580, 1429-1438.	8.0	31
68	Convergence and impoverishment of fen communities in a eutrophicated agricultural landscape of the Czech Republic. Applied Vegetation Science, 2017, 20, 225-235.	1.9	27
69	Refugial occurrence and ecology of the land snail Vertigo lilljeborgi in fen habitats in temperate mainland Europe. Journal of Molluscan Studies, 2017, 83, 451-460.	1.2	5
70	Arcto-Alpine Species at Their Niche Margin: the Western Carpathian Refugia of <i>Juncus castaneus</i> and <i>J. triglumis</i> in Slovakia. Annales Botanici Fennici, 2017, 54, 67-82.	0.1	4
71	Formalized classification of European fen vegetation at the alliance level. Applied Vegetation Science, 2017, 20, 124-142.	1.9	73
72	The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 2017, 26, 425-434.	5.8	57

#	Article	IF	CITATIONS
73	Microsatellite variation in three calcium-tolerant species of peat moss detected specific genotypes of Sphagnum warnstorfii on magnesium-rich bedrock. Preslia, 2017, 89, 101-114.	2.8	7
74	Testing interâ€regional variation in <scp>pH</scp> niches of fen mosses. Journal of Vegetation Science, 2016, 27, 352-364.	2.2	16
75	Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 2016, 19, 3-264.	1.9	905
76	Meesia triquetra, a New Relict Moss for the Republic of Macedonia. Herzogia, 2016, 29, 66-71.	0.4	1
77	New national and regional bryophyte records, 49. Journal of Bryology, 2016, 38, 327-347.	1.2	26
78	Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quaternary Science Reviews, 2016, 133, 48-61.	3.0	45
79	Origin of a boreal birch bog woodland and landscape development on a warm low mountain summit at the Carpathian–Pannonian interface. Holocene, 2016, 26, 1112-1125.	1.7	20
80	Local adaptations in bryophytes revisited: the genetic structure of the calciumâ€ŧolerant peatmoss <i>Sphagnum warnstorfii</i> along geographic and <scp>pH</scp> gradients. Ecology and Evolution, 2015, 5, 229-242.	1.9	22
81	European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas, 2015, 44, 638-657.	2.4	51
82	European Mire Vegetation Database: a gap-oriented database for European fens and bogs. Phytocoenologia, 2015, 45, 291-297.	0.5	13
83	Validations of high-rank syntaxa in Potamogetonetea and Scheuchzerio-Caricetea fuscae. Lazaroa, 2015, 36, .	0.8	0
84	Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. Holocene, 2015, 25, 702-715.	1.7	49
85	Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobotanica, 2015, 50, 293-301.	0.9	32
86	Mollusc Assemblages of Scandinavian Fens: Species Composition in Relation to Environmental Gradients and Vegetation. Annales Zoologici Fennici, 2015, 52, 1-16.	0.6	6
87	Calcium intolerance of fen mosses: Physiological evidence, effects of nutrient availability and successional drivers. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 347-359.	2.7	56
88	Climatic gradients within temperate Europe and small-scale species composition of lichen-rich dry acidophilous Scots pine forests. Fungal Ecology, 2015, 14, 8-23.	1.6	10
89	Interstadial inland dune slacks in south-west Slovakia: a multi-proxy vegetation and landscape reconstruction. Quaternary International, 2015, 357, 314-328.	1.5	13
90	Biogeographic patterns of baseâ€rich fen vegetation across <scp>E</scp> urope. Applied Vegetation Science, 2014, 17, 367-380.	1.9	34

#	Article	IF	CITATIONS
91	Land snail richness and abundance along a sharp ecological gradient at two sampling scales: disentangling relationships. Journal of Molluscan Studies, 2014, 80, 256-264.	1.2	7
92	Small ones and big ones: cross-taxon congruence reflects organism body size in ombrotrophic bogs. Hydrobiologia, 2014, 726, 95-107.	2.0	8
93	Patterns in moss element concentrations in fens across species, habitats, and regions. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 203-218.	2.7	36
94	Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians. Vegetation History and Archaeobotany, 2014, 23, 497-513.	2.1	24
95	Mollusc and plant assemblages controlled by different ecological gradients at Eastern European fens. Acta Oecologica, 2014, 56, 66-73.	1.1	12
96	Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies. Quaternary Research, 2014, 82, 107-120.	1.7	27
97	Do we need soil moisture measurements in the vegetation–environment studies in wetlands?. Journal of Vegetation Science, 2013, 24, 127-137.	2.2	19
98	Longâ€ŧerm and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshwater Biology, 2013, 58, 2196-2207.	2.4	23
99	Patterns of Land Snail Assemblages along a Fine-Scale Moisture Gradient. Malacologia, 2013, 56, 31-42.	0.4	21
100	Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions. Environmental Pollution, 2013, 179, 201-209.	7.5	17
101	Effects of changes in management on resistance and resilience in three grassland communities. Applied Vegetation Science, 2013, 16, 640-649.	1.9	37
102	Vegetation diversity of saltâ€rich grasslands in <scp>S</scp> outheast <scp>E</scp> urope. Applied Vegetation Science, 2013, 16, 521-537.	1.9	54
103	Vegetation–environment relationships in alpine mires of the West Carpathians and the Alps. Journal of Vegetation Science, 2013, 24, 1118-1128.	2.2	16
104	Distribution of habitat specialists in semiâ€natural grasslands. Journal of Vegetation Science, 2013, 24, 616-627.	2.2	16
105	Functional Traits in a Species-Rich Grassland and a Short-Term Change in Management: Is There a Competition-Colonization Trade-Off?. Folia Geobotanica, 2013, 48, 373-391.	0.9	6
106	New national and regional bryophyte records, 37. Journal of Bryology, 2013, 35, 290-305.	1.2	28
107	Plant seedlings in a speciesâ€rich meadow: effect of management, vegetation type and functional traits. Applied Vegetation Science, 2013, 16, 286-295.	1.9	15
108	The age of islandâ€like habitats impacts habitat specialist species richness. Ecology, 2012, 93, 1106-1114.	3.2	67

#	Article	IF	CITATIONS
109	Species Richness, Community Specialization and Soil-Vegetation Relationships of Managed Grasslands in a Geologically Heterogeneous Landscape. Folia Geobotanica, 2012, 47, 349-371.	0.9	13
110	Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas, 2012, 41, 690-706.	2.4	49
111	How a <i>Sphagnum fuscum</i> â€dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak springâ€fed mire. Journal of Quaternary Science, 2012, 27, 233-243.	2.1	45
112	High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. Journal of Vegetation Science, 2012, 23, 605-616.	2.2	37
113	Patterns of bryophyte and vascular plant richness in European subalpine springs. Plant Ecology, 2012, 213, 237-249.	1.6	21
114	Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. Journal of Limnology, 2011, 70, 54.	1.1	39
115	Is species richness of small spring fens influenced by the spatial mass effect?. Community Ecology, 2011, 12, 202-209.	0.9	9
116	Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. Journal of Biogeography, 2011, 38, 742-755.	3.0	77
117	Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography, 2011, 38, 1683-1693.	3.0	123
118	Long-term vegetation changes in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. Journal of Vegetation Science, 2011, 22, 891-904.	2.2	33
119	Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient inÂhighly polluted region of Central-East Europe. Environmental Pollution, 2011, 159, 585-590.	7.5	38
120	Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 2011, 667, 159-171.	2.0	23
121	Mollusc communities in Bulgarian fens: predictive power of the environment, vegetation, and spatial structure in an isolated habitat. Die Naturwissenschaften, 2011, 98, 671-681.	1.6	8
122	The distribution of arctic-alpine elements within high-altitude vegetation of the Western Carpathians in relation to environmental factors, life forms and phytogeography. Phytocoenologia, 2010, 40, 189-203.	0.5	16
123	Imputation of environmental variables for vegetation plots based on compositional similarity. Journal of Vegetation Science, 2010, 21, 88-95.	2.2	12
124	OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. Journal of Vegetation Science, 2010, 21, 287-299.	2.2	88
125	Can tissue element concentration patterns at the individual species level indicate the factors underlying vegetation gradients in wetlands?. Journal of Vegetation Science, 2010, 21, 355-363.	2.2	7
126	Deterministic assembly of land snail communities according to species size and diet. Journal of Animal Ecology, 2010, 79, 803-810.	2.8	37

#	Article	IF	CITATIONS
127	Habitats of relict terrestrial snails in southern Siberia: lessons for the reconstruction of palaeoenvironments of fullâ€glacial Europe. Journal of Biogeography, 2010, 37, 1450-1462.	3.0	65
128	The insecure future of Bulgarian refugial mires: economic progress versus Natura 2000. Oryx, 2010, 44, 539-546.	1.0	6
129	Disjunct Occurrences of Plant Species in the Refugial Mires of Bulgaria. Folia Geobotanica, 2009, 44, 365-386.	0.9	24
130	How can we effectively restore species richness and natural composition of a <i>Moliniaâ€</i> invaded fen?. Journal of Applied Ecology, 2009, 46, 417-425.	4.0	51
131	A European warm waters neophyte Shinnersia rivularis — new alien species to the Slovak flora. Biologia (Poland), 2009, 64, 684-686.	1.5	6
132	Diversity of subalpine and alpine vegetation of the eastern part of the NÃzke Tatry Mts in Slovakia: major types and environmental gradients. Biologia (Poland), 2009, 64, 908-918.	1.5	10
133	The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness Fottea, 2009, 9, 355-368.	0.9	48
134	Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. Journal of Biogeography, 2008, 35, 282-294.	3.0	25
135	The Balkan wet grassland vegetation: a prerequisite to better understanding of European habitat diversity. Plant Ecology, 2008, 195, 197-213.	1.6	20
136	Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology, 2008, 196, 61-83.	1.6	72
137	Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. Journal of Vegetation Science, 2008, 19, 613-620.	2.2	46
138	Mire vegetation of the MurÃinska Planina Mts — formalised classification, ecology, main environmental gradient and influence of geographical position. Biologia (Poland), 2008, 63, 368-377.	1.5	8
139	Sphagnumdistribution patterns along environmental gradients in Bulgaria. Journal of Bryology, 2007, 29, 18-26.	1.2	28
140	Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development?. Journal of Molluscan Studies, 2007, 73, 53-60.	1.2	52
141	Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica, 2007, 32, 161-171.	1.1	49
142	The role of base saturation and altitude in habitat differentiation within <i>Philonotis</i> in springs and mires of three different European regions. Bryologist, 2007, 110, 776-787.	0.6	8
143	Testing the species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos, 2007, 116, 1311-1322.	2.7	37
144	Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecology and Biogeography, 2007, 16, 668-678.	5.8	95

#	Article	IF	CITATIONS
145	Formal definitions of Slovakian mire plant associations and their application in regional research. Biologia (Poland), 2007, 62, 400-408.	1.5	21
146	Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism!. Folia Geobotanica, 2007, 42, 199-208.	0.9	69
147	Testing the Species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos, 2007, 116, 1311-1322.	2.7	1
148	Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 97-114.	2.7	211
149	Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecology, 2006, 184, 111-130.	1.6	70
150	Relationships between environmental factors and vegetation in nutrient-enriched fens at fishpond margins. Folia Geobotanica, 2006, 41, 353-376.	0.9	25
151	New national and regional bryophyte records, 13. Journal of Bryology, 2006, 28, 151-155.	1.2	27
152	New national and regional bryophyte records, 12. Journal of Bryology, 2006, 28, 68-70.	1.2	30
153	Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19386-19389.	7.1	367
154	Nitrogen concentration and delta15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biology, 2005, 11, 106-114.	9.5	164
155	Recording relative water table depth using PVC tape discolouration: Advantages and constraints in fens. Applied Vegetation Science, 2005, 8, 21-26.	1.9	8
156	Recording relative water table depth using PVC tape discolouration: Advantages and constraints in fens. Applied Vegetation Science, 2005, 8, 21.	1.9	0
157	Distribution of diatoms and bryophytes on linear transects through spring fens. Nova Hedwigia, 2004, 78, 411-424.	0.4	53
158	Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 2004, 163, 609-616.	7.3	169
159	Bryophyte and vascular plant responses to base-richness and water level gradients in Western CarpathianSphagnum-rich mires. Folia Geobotanica, 2004, 39, 335-351.	0.9	73
160	Environmental determinants of variation in Czech Calthion wet meadows: a synthesis of phytosociological data. Phytocoenologia, 2004, 34, 33-54.	0.5	19
161	COMPOSITION AND SPECIES RICHNESS OF MOLLUSCAN COMMUNITIES IN RELATION TO VEGETATION AND WATER CHEMISTRY IN THE WESTERN CARPATHIAN SPRING FENS: THE POOR–RICH GRADIENT. Journal of Molluscan Studies, 2003, 69, 349-357.	1.2	85
162	Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica, 2002, 37, 205-224.	0.9	114

#	Article	IF	CITATIONS
163	Scaleâ€dependent biases in species counts in a grassland. Journal of Vegetation Science, 2001, 12, 699-704.	2.2	86
164	The vegetation of rich fens (Sphagno warnstorfii-Tomentypnion nitentis) at the southeastern margins of their European range. Vegetation Classification and Survey, 0, 2, 177-190.	0.0	2