Roman Slowinski

List of Publications by Citations

Source: https://exaly.com/author-pdf/4885490/roman-slowinski-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 312
 13,402
 58
 107

 papers
 citations
 h-index
 g-index

 331
 15,436
 3
 6.74

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
312	Rough sets theory for multicriteria decision analysis. <i>European Journal of Operational Research</i> , 2001 , 129, 1-47	5.6	1171
311	A generalized definition of rough approximations based on similarity. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2000 , 12, 331-336	4.2	628
310	Rough sets. Communications of the ACM, 1995 , 38, 88-95	2.5	547
309	Rough approximation of a preference relation by dominance relations. <i>European Journal of Operational Research</i> , 1999 , 117, 63-83	5.6	350
308	Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. <i>European Journal of Operational Research</i> , 2008 , 191, 416-436	5.6	331
307	Rough set approach to multi-attribute decision analysis. <i>European Journal of Operational Research</i> , 1994 , 72, 443-459	5.6	321
306	Rough approximation by dominance relations. International Journal of Intelligent Systems, 2002, 17, 15.	3- 8.7 41	308
305	Business failure prediction using rough sets. European Journal of Operational Research, 1999, 114, 263-	28 ,0 6	302
304	Rough sets methodology for sorting problems in presence of multiple attributes and criteria. <i>European Journal of Operational Research</i> , 2002 , 138, 247-259	5.6	295
303	Inferring an ELECTRE TRI Model from Assignment Examples. <i>Journal of Global Optimization</i> , 1998 , 12, 157-174	1.5	259
302	A multicriteria fuzzy linear programming method for water supply system development planning. <i>Fuzzy Sets and Systems</i> , 1986 , 19, 217-237	3.7	205
301	A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. <i>Computers and Operations Research</i> , 2000 , 27, 757-777	4.6	204
300	An Overview of ELECTRE Methods and their Recent Extensions. <i>Journal of Multi-Criteria Decision Analysis</i> , 2013 , 20, 61-85	1.9	203
299	Forty years of the European Journal of Operational Research: A bibliometric overview. <i>European Journal of Operational Research</i> , 2017 , 262, 803-816	5.6	182
298	Multi-criteria classification IA new scheme for application of dominance-based decision rules. <i>European Journal of Operational Research</i> , 2007 , 181, 1030-1044	5.6	169
297	Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. <i>European Journal of Operational Research</i> , 2009 , 195, 460-486	5.6	167
296	Sequential covering rule induction algorithm for variable consistency rough set approaches. <i>Information Sciences</i> , 2011 , 181, 987-1002	7.7	160

(1986-2013)

295	Questions guiding the choice of a multicriteria decision aiding method. <i>EURO Journal on Decision Processes</i> , 2013 , 1, 69-97	1.1	137
294	The Light Beam SearchLapproach Lan overview of methodology applications. <i>European Journal of Operational Research</i> , 1999 , 113, 300-314	5.6	135
293	Robust ordinal regression in preference learning and ranking. <i>Machine Learning</i> , 2013 , 93, 381-422	4	130
292	Multiple criteria sorting with a set of additive value functions. <i>European Journal of Operational Research</i> , 2010 , 207, 1455-1470	5.6	118
291	Can Bayesian confirmation measures be useful for rough set decision rules?. <i>Engineering Applications of Artificial Intelligence</i> , 2004 , 17, 345-361	7.2	115
2 90	Multiple Criteria Hierarchy Process with ELECTRE and PROMETHEE. <i>Omega</i> , 2013 , 41, 820-846	7.2	111
289	Monotonic Variable Consistency Rough Set Approaches. <i>International Journal of Approximate Reasoning</i> , 2009 , 50, 979-999	3.6	110
288	Fuzzy rough sets and multiple-premise gradual decision rules. <i>International Journal of Approximate Reasoning</i> , 2006 , 41, 179-211	3.6	109
287	Multiobjective network scheduling with efficient use of renewable and nonrenewable resources. <i>European Journal of Operational Research</i> , 1981 , 7, 265-273	5.6	106
286	Computational experience with a backtracking algorithm for solving a general class of precedence and resource-constrained scheduling problems. <i>European Journal of Operational Research</i> , 1990 , 49, 68-	.75 <mark>9</mark> 6	105
285	Stochastic dominance-based rough set model for ordinal classification. <i>Information Sciences</i> , 2008 , 178, 4019-4037	7.7	104
284	Parameterized rough set model using rough membership and Bayesian confirmation measures. <i>International Journal of Approximate Reasoning</i> , 2008 , 49, 285-300	3.6	104
283	ROUGH SET REDUCTION OF ATTRIBUTES AND THEIR DOMAINS FOR NEURAL NETWORKS. <i>Computational Intelligence</i> , 1995 , 11, 339-347	2.5	101
282	Rough classification in incomplete information systems. <i>Mathematical and Computer Modelling</i> , 1989 , 12, 1347-1357		101
281	Rough set approach to multiple criteria classification with imprecise evaluations and assignments. European Journal of Operational Research, 2009 , 198, 626-636	5.6	99
2 80	Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. <i>European Journal of Operational Research</i> , 2004 , 158, 271-2	9 5 .6	94
279	Fuzzy project scheduling system for software development. Fuzzy Sets and Systems, 1994, 67, 101-117	3.7	94
278	Rough classification of patients after highly selective vagotomy for duodenal ulcer. <i>International Journal of Man-Machine Studies</i> , 1986 , 24, 413-433		93

277	Fuzzy priority heuristics for project scheduling. Fuzzy Sets and Systems, 1996, 83, 291-299	3.7	91
276	DSS for multiobjective project scheduling. European Journal of Operational Research, 1994, 79, 220-229	5.6	89
275	A New Rough Set Approach to Evaluation of Bankruptcy Risk 1998 , 121-136		85
274	How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. <i>Omega</i> , 2020 , 96, 102261-102261	7.2	84
273	Prediction of company acquisition in Greece by means of the rough set approach. <i>European Journal of Operational Research</i> , 1997 , 100, 1-15	5.6	84
272	Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP. <i>Decision Support Systems</i> , 2012 , 52, 549-561	5.6	82
271	ELECTREGKMS: Robust ordinal regression for outranking methods. <i>European Journal of Operational Research</i> , 2011 , 214, 118-135	5.6	82
270	Extreme ranking analysis in robust ordinal regression. <i>Omega</i> , 2012 , 40, 488-501	7.2	81
269	A green chemistry-based classification model for the synthesis of silver nanoparticles. <i>Green Chemistry</i> , 2015 , 17, 2825-2839	10	77
268	Multiple Criteria Hierarchy Process in Robust Ordinal Regression. <i>Decision Support Systems</i> , 2012 , 53, 660-674	5.6	76
267	A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis. <i>Omega</i> , 2017 , 73, 1-17	7.2	74
266	Interactive analysis of multiple-criteria project scheduling problems. <i>European Journal of Operational Research</i> , 1998 , 107, 315-324	5.6	74
265	Multiple Criteria Hierarchy Process for ELECTRE Tri methods. <i>European Journal of Operational Research</i> , 2016 , 252, 191-203	5.6	73
264	Decision Rule Approach 2005 , 507-555		73
263	Selection of a representative value function in robust multiple criteria sorting. <i>Computers and Operations Research</i> , 2011 , 38, 1620-1637	4.6	72
262	Selection of a representative value function in robust multiple criteria ranking and choice. <i>European Journal of Operational Research</i> , 2012 , 217, 541-553	5.6	67
261	Using Choquet integral as preference model in interactive evolutionary multiobjective optimization. <i>European Journal of Operational Research</i> , 2016 , 250, 884-901	5.6	66
260	MULTICRITERIA PROGRAMMING OF WATER SUPPLY SYSTEMS FOR RURAL AREAS1. Journal of the American Water Resources Association, 1992 , 28, 13-31	2.1	65

(2013-2015)

Learning Value Functions in Interactive Evolutionary Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2015 , 19, 88-102	15.6	63	
Dominance-based Rough Set Approach to decision under uncertainty and time preference. <i>Annals of Operations Research</i> , 2010 , 176, 41-75	3.2	63	
Multicriteria decision support using rules that represent rough-graded preference relations. <i>European Journal of Operational Research</i> , 2008 , 188, 206-223	5.6	61	
Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model. <i>Omega</i> , 2016 , 63, 154-169	7.2	60	
Robust ordinal regression for value functions handling interacting criteria. <i>European Journal of Operational Research</i> , 2014 , 239, 711-730	5.6	60	
An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. <i>Lecture Notes in Computer Science</i> , 2001 , 304-313	0.9	57	
Molp with an interactive assessment of a piecewise linear utility function. <i>European Journal of Operational Research</i> , 1987 , 31, 350-357	5.6	57	
ELECTRE Methods: Main Features and Recent Developments. <i>Applied Optimization</i> , 2010 , 51-89		54	
Inductive discovery of laws using monotonic rules. <i>Engineering Applications of Artificial Intelligence</i> , 2012 , 25, 284-294	7.2	53	
Extension Of The Rough Set Approach To Multicriteria Decision Support. <i>Infor</i> , 2000 , 38, 161-195	0.5	53	
ELECTRE-III-H: An outranking-based decision aiding method for hierarchically structured criteria. <i>Expert Systems With Applications</i> , 2015 , 42, 4910-4926	7.8	52	
ROUGH-SET REASONING ABOUT UNCERTAIN DATA. Fundamenta Informaticae, 1996 , 27, 229-243	1	52	
Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. <i>Lecture Notes in Computer Science</i> , 1999 , 146-157	0.9	51	
Mobile clinical support system for pediatric emergencies. <i>Decision Support Systems</i> , 2003 , 36, 161-176	5.6	49	
Two Approaches to Problems of Resource Allocation among Project Activities A Comparative Study. <i>Journal of the Operational Research Society</i> , 1980 , 31, 711	2	47	
Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory 2007 , 36-52		47	
Learning ensemble classifiers for diabetic retinopathy assessment. <i>Artificial Intelligence in Medicine</i> , 2018 , 85, 50-63	7.4	46	
On Nonparametric Ordinal Classification with Monotonicity Constraints. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2013 , 25, 2576-2589	4.2	46	
	on Evolutionary Computation, 2015, 19, 88-102 Dominance-based Rough Set Approach to decision under uncertainty and time preference. Annals of Operations Research, 2010, 176, 41-75 Multicriteria decision support using rules that represent rough-graded preference relations. European Journal of Operational Research, 2008, 188, 206-223 Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega, 2016, 63, 154-169 Robust ordinal regression for value functions handling interacting criteria. European Journal of Operational Research, 2014, 239, 711-730 An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. Lecture Notes in Computer Science, 2001, 304-313 Molp with an interactive assessment of a piecewise linear utility function. European Journal of Operational Research, 1987, 31, 350-357 ELECTRE Methods: Main Features and Recent Developments. Applied Optimization, 2010, 51-89 Inductive discovery of laws using monotonic rules. Engineering Applications of Artificial Intelligence, 2012, 25, 284-294 Extension Of The Rough Set Approach To Multicriteria Decision Support. Infor, 2000, 38, 161-195 ELECTRE-III-H: An outranking-based decision aiding method for hierarchically structured criteria. Expert Systems With Applications, 2015, 42, 4910-4926 ROUGH-SET REASONING ABOUT UNCERTAIN DATA. Fundamenta Informaticae, 1996, 27, 229-243 Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. Lecture Notes in Computer Science, 1999, 146-157 Mobile clinical support system for pediatric emergencies. Decision Support Systems, 2003, 36, 161-176 Two Approaches to Problems of Resource Allocation among Project Activities - A Comparative Study. Journal of the Operational Research Society, 1980, 31, 711 Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory 2007, 36-52 Learning ensemble classification with M	Dominance-based Rough Set Approach to decision under uncertainty and time preference. Annals of Operations Research, 2010, 176, 41-75 Multicriteria decision support using rules that represent rough-graded preference relations. European Journal of Operational Research, 2008, 188, 206-223 Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega, 2016, 63, 154-169 Robust ordinal regression for value functions handling interacting criteria. European Journal of Operational Research, 2014, 239, 711-730 An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. Lecture Notes in Computer Science, 2001, 304-313 Molp with an interactive assessment of a piecewise linear utility function. European Journal of Operational Research, 1987, 31, 350-357 ELECTRE Methods: Main Features and Recent Developments. Applied Optimization, 2010, 51-89 Inductive discovery of laws using monotonic rules. Engineering Applications of Artificial Intelligence, 2012, 25, 284-294 Extension Of The Rough Set Approach To Multicriteria Decision Support. Infor, 2000, 38, 161-195 ELECTRE-III-H: An outranking-based decision aiding method for hierarchically structured criteria. Expert Systems With Applications, 2015, 42, 4910-4926 ROUGH-SET REASONING ABOUT UNCERTAIN DATA. Fundamenta Informaticae, 1996, 27, 229-243 Landling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. Lecture Notes in Computer Science, 1999, 146-157 Mobile clinical support system for pediatric emergencies. Decision Support Systems, 2003, 36, 161-176 Two Approaches to Problems of Resource Allocation among Project Activities A Comparative Study. Journal of the Operational Research Society, 1980, 31, 711 Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory 2007, 36-52 Learning ensemble classifiers for diabetic retinopathy assessment. Artificial Intell	Dominance-based Rough Set Approach to decision under uncertainty and time preference. Annals of Operations Research, 2010, 176, 4175 Multicriteria decision support using rules that represent rough-graded preference relations. European Journal of Operational Research, 2008, 188, 206-223 Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega, 2016, 63, 154-169 Robust ordinal regression for value functions handling interacting criteria. European Journal of Operational Research, 2014, 239, 711-730 An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. Lecture Notes in Computer Science, 2001, 304-313 Molp with an interactive assessment of a piecewise linear utility function. European Journal of Operational Research, 1987, 31, 350-357 ELECTRE Methods: Main Features and Recent Developments. Applied Optimization, 2010, 51-89 Inductive discovery of laws using monotonic rules. Engineering Applications of Artificial Intelligence, 2012, 25, 284-294 Extension Of the Rough Set Approach To Multicriteria Decision Support. Infor, 2000, 38, 161-195 ELECTRE-III-H: An outranking-based decision aiding method for hierarchically structured criteria. Expert Systems With Applications, 2015, 42, 4910-4926 ROUGH-SET REASONING ABOUT UNCERTAIN DATA. Fundamenta Informaticae, 1996, 27, 229-243 Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. Lecture Notes in Computer Science, 1999, 146-157 Mobile clinical support system for pediatric emergencies. Decision Support Systems, 2003, 36, 161-176 John Nonparametric Ordinal Classification with Monotonicity Constraints. IEEE Transactions on No Nonparametric Ordinal Classification with Monotonicity Constraints. IEEE Transactions on

241	MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria. Omega, 2014, 42, 189-20	0 9 .2	45
240	Discriminant versus rough sets approach to vague data analysis. <i>Applied Stochastic Models and Data Analysis</i> , 1992 , 8, 43-56		45
239	Two Approaches to Problems of Resource Allocation Among Project Activities IA Comparative Study. <i>Journal of the Operational Research Society</i> , 1980 , 31, 711-723	2	45
238	Handling effects of reinforced preference and counter-veto in credibility of outranking. <i>European Journal of Operational Research</i> , 2008 , 188, 185-190	5.6	44
237	Algorithm 520: An Automatic Revised Simplex Method for Constrained Resource Network Scheduling [H]. <i>ACM Transactions on Mathematical Software</i> , 1977 , 3, 295-300	2.3	44
236	ENDER: a statistical framework for boosting decision rules. <i>Data Mining and Knowledge Discovery</i> , 2010 , 21, 52-90	5.6	42
235	Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2008 , 121-155	0.9	42
234	A New Rough Set Approach to Multicriteria and Multiattribute Classification. <i>Lecture Notes in Computer Science</i> , 1998 , 60-67	0.9	42
233	Rough set learning of preferential attitude in multi-criteria decision making. <i>Lecture Notes in Computer Science</i> , 1993 , 642-651	0.9	42
232	Rough set and rule-based multicriteria decision aiding. <i>Pesquisa Operacional</i> , 2012 , 32, 213-270	0.3	41
231	Roughdas and Roughclass Software Implementations of the Rough Sets Approach 1992, 445-456		41
230	Rough Set Analysis of Preference-Ordered Data. <i>Lecture Notes in Computer Science</i> , 2002 , 44-59	0.9	41
229	Properties of rule interestingness measures and alternative approaches to normalization of measures. <i>Information Sciences</i> , 2012 , 216, 1-16	7.7	40
228	Putting Dominance-based Rough Set Approach and robust ordinal regression together. <i>Decision Support Systems</i> , 2013 , 54, 891-903	5.6	40
227	Measuring expected effects of interventions based on decision rules. <i>Journal of Experimental and Theoretical Artificial Intelligence</i> , 2005 , 17, 103-118	2	40
226	The Use of Rough Sets and Fuzzy Sets in MCDM. <i>Profiles in Operations Research</i> , 1999 , 397-455	1	40
225	Rough Set Based Decision Support 2005 , 475-527		40
224	Comparative analysis of targeted metabolomics: dominance-based rough set approach versus orthogonal partial least square-discriminant analysis. <i>Journal of Biomedical Informatics</i> , 2015 , 53, 291-9	10.2	39

223	Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory. <i>Computers in Industry</i> , 1992 , 20, 141-152	11.6	39	
222	Robust Ordinal Regression for Dominance-based Rough Set Approach to multiple criteria sorting. <i>Information Sciences</i> , 2014 , 283, 211-228	7.7	38	
221	RUTA: A framework for assessing and selecting additive value functions on the basis of rank related requirements. <i>Omega</i> , 2013 , 41, 735-751	7.2	38	
220	Incremental Induction of Decision Rules from Dominance-based Rough Approximations. <i>Electronic Notes in Theoretical Computer Science</i> , 2003 , 82, 40-51	0.7	38	
219	Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting. <i>European Journal of Operational Research</i> , 2015 , 241, 830-841	5.6	37	•
218	Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making. <i>Group Decision and Negotiation</i> , 2013 , 22, 429-462	2.5	36	
217	Preemptive scheduling of independent jobs on parallel machines subject to financial constraints. European Journal of Operational Research, 1984 , 15, 366-373	5.6	36	
216	Variable consistency dominance-based rough set approach to preference learning in multicriteria ranking. <i>Information Sciences</i> , 2014 , 277, 525-552	7.7	35	
215	Supporting triage of children with abdominal pain in the emergency room. <i>European Journal of Operational Research</i> , 2005 , 160, 696-709	5.6	34	
214	Fuzzy versus stochastic approaches to multicriteria linear programming under uncertainty. <i>Naval Research Logistics</i> , 1988 , 35, 673-695	1.5	34	
213	Robust Ordinal Regression. <i>Profiles in Operations Research</i> , 2010 , 241-283	1	32	
212	Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support. <i>Engineering Applications of Artificial Intelligence</i> , 2007 , 20, 587-600	7.2	31	
211	Possibility and necessity measure specification using modifiers for decision making under fuzziness. <i>Fuzzy Sets and Systems</i> , 2003 , 137, 151-175	3.7	31	
2 10	Sensitivity analysis of rough classification. <i>International Journal of Man-Machine Studies</i> , 1990 , 32, 693-7	05	31	
209	Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets. <i>Lecture Notes in Computer Science</i> , 2005 , 314-324	0.9	31	
208	Dominance-Based Rough Set Approach to Reasoning About Ordinal Data. <i>Lecture Notes in Computer Science</i> , 2007 , 5-11	0.9	30	
207	Pareto Simulated Annealing for Fuzzy Multi-Objective Combinatorial Optimization. <i>Journal of Heuristics</i> , 2000 , 6, 329-345	1.9	29	
206	Rough Classification with Valued Closeness Relation. <i>Studies in Classification, Data Analysis, and Knowledge Organization</i> , 1994 , 482-489	0.2	29	

205	Rough Set Processing of Vague Information Using Fuzzy Similarity Relations 2000 , 149-173		29
204	DIS-CARD: a new method of multiple criteria sorting to classes with desired cardinality. <i>Journal of Global Optimization</i> , 2013 , 56, 1143-1166	1.5	28
203	A Graded Quadrivalent Logic for Ordinal Preference Modelling: Loyolallike Approach. <i>Fuzzy Optimization and Decision Making</i> , 2002 , 1, 93-111	5.1	28
202	Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions. <i>Annals of Operations Research</i> , 2017 , 251, 117-139	3.2	27
201	Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes. <i>Journal of Cleaner Production</i> , 2017 , 162, 938-948	10.3	27
200	jMAF - Dominance-Based Rough Set Data Analysis Framework. <i>Intelligent Systems Reference Library</i> , 2013 , 185-209	0.8	27
199	Customer satisfaction analysis based on rough set approach. <i>Journal of Business Economics</i> , 2007 , 77, 325-339	2.3	27
198	Preference Representation by Means of Conjoint Measurement and Decision Rule Model. <i>Profiles in Operations Research</i> , 2002 , 263-313	1	27
197	Antimicrobial activity and SAR study of new gemini imidazolium-based chlorides. <i>Chemical Biology and Drug Design</i> , 2014 , 83, 278-88	2.9	26
196	Fuzzy Extension of the Rough Set Approach to Multicriteria and Multiattribute Sorting. <i>Studies in Fuzziness and Soft Computing</i> , 2000 , 131-151	0.7	26
195	From the farm to the agri-food system: A multiple criteria framework to evaluate extended multi-functional value. <i>Ecological Indicators</i> , 2017 , 79, 91-102	5.8	25
194	Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression. <i>Lecture Notes in Computer Science</i> , 2009 , 554-568	0.9	25
193	Interactive Multiobjective Optimization from a Learning Perspective. <i>Lecture Notes in Computer Science</i> , 2008 , 405-433	0.9	25
192	Exploitation of a Rough Approximation of the Outranking Relation in Multicriteria Choice and Ranking. <i>Lecture Notes in Economics and Mathematical Systems</i> , 1998 , 45-60	0.4	25
191	Dominance-Based Rough Set Approach to Knowledge Discovery (I): General Perspective 2004 , 513-552		25
190	Dominance-Based Rough Set Approach Using Possibility and Necessity Measures. <i>Lecture Notes in Computer Science</i> , 2002 , 85-92	0.9	25
189	Multiple criteria ranking and choice with all compatible minimal cover sets of decision rules. <i>Knowledge-Based Systems</i> , 2015 , 89, 569-583	7.3	23
188	Post factum analysis for robust multiple criteria ranking and sorting. <i>Journal of Global Optimization</i> , 2016 , 65, 531-562	1.5	23

(2009-2014)

187	Preferential reducts and constructs in robust multiple criteria ranking and sorting. <i>OR Spectrum</i> , 2014 , 36, 1021-1053	1.9	23
186	Dominance-Based Rough Set Approach to Case-Based Reasoning. <i>Lecture Notes in Computer Science</i> , 2006 , 7-18	0.9	23
185	Rough-Set-Based Decision Support 2014 , 557-609		23
184	Optimization of multiple satisfaction levels in portfolio decision analysis. <i>Omega</i> , 2018 , 78, 192-204	7.2	22
183	Beyond Markowitz with multiple criteria decision aiding. <i>Journal of Business Economics</i> , 2013 , 83, 29-60	2.3	22
182	Generalized Decision Algorithms, Rough Inference Rules, and Flow Graphs. <i>Lecture Notes in Computer Science</i> , 2002 , 93-104	0.9	22
181	Rough sets analysis of diagnostic capacity of vibroacoustic symptoms. <i>Computers and Mathematics With Applications</i> , 1992 , 24, 109-123	2.7	22
180	Rule learning with monotonicity constraints 2009 ,		21
179	Preference disaggregation for multiple criteria sorting with partial monotonicity constraints: Application to exposure management of nanomaterials. <i>International Journal of Approximate Reasoning</i> , 2020 , 117, 60-80	3.6	21
178	Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria. <i>European Journal of Operational Research</i> , 2019 , 276, 1071-1089	5.6	20
177	Robustness analysis for decision under uncertainty with rule-based preference model. <i>Information Sciences</i> , 2016 , 328, 321-339	7.7	20
176	Dominance-Based Rough Set Approach to Budget Allocation in Highway Maintenance Activities. Journal of Infrastructure Systems, 2011 , 17, 75-85	2.9	20
175	Interactive Multiobjective Optimization Using a Set of Additive Value Functions. <i>Lecture Notes in Computer Science</i> , 2008 , 97-119	0.9	20
174	Learning Decision Rules from Similarity Based Rough Approximations. <i>Studies in Fuzziness and Soft Computing</i> , 1998 , 37-54	0.7	20
173	Fuzzy Similarity Relation as a Basis for Rough Approximations. <i>Lecture Notes in Computer Science</i> , 1998 , 283-289	0.9	20
172	Parametric evaluation of research units with respect to reference profiles. <i>Decision Support Systems</i> , 2015 , 72, 33-43	5.6	19
171	Decision Rule Approach. <i>Profiles in Operations Research</i> , 2016 , 497-552	1	19
170	Learning Rule Ensembles for Ordinal Classification with Monotonicity Constraints. <i>Fundamenta Informaticae</i> , 2009 , 94, 163-178	1	19

169	A DSS for RessourceConstrained Project Scheduling under Uncertainty. <i>Journal of Decision Systems</i> , 1993 , 2, 111-128	1.2	19
168	Measures of rule interestingness in various perspectives of confirmation. <i>Information Sciences</i> , 2016 , 346-347, 216-235	7.7	19
167	Auto loan fraud detection using dominance-based rough set approach versus machine learning methods. <i>Expert Systems With Applications</i> , 2021 , 163, 113740	7.8	19
166	Selection of a representative set of parameters for robust ordinal regression outranking methods. <i>Computers and Operations Research</i> , 2012 , 39, 2500-2519	4.6	18
165	Incremental versus Non-incremental Rule Induction for Multicriteria Classification. <i>Lecture Notes in Computer Science</i> , 2004 , 33-53	0.9	18
164	Maximum likelihood rule ensembles 2008 ,		17
163	Bayesian Decision Theory for Dominance-Based Rough Set Approach 2007 , 134-141		17
162	Rough Set Approach to Multi-Attribute Choice and Ranking Problems. <i>Lecture Notes in Economics and Mathematical Systems</i> , 1997 , 318-329	0.4	17
161	Interactive Evolutionary Multiobjective Optimization using Dominance-based Rough Set Approach 2010 ,		16
160	Rough set approach to the evaluation of stormwater pollution. <i>International Journal of Environment and Pollution</i> , 1999 , 12, 232	0.7	16
159	Variable Consistency Monotonic Decision Trees. Lecture Notes in Computer Science, 2002, 247-254	0.9	16
158	Generation of rough sets reducts and constructs based on inter-class and intra-class information. <i>Fuzzy Sets and Systems</i> , 2015 , 274, 124-142	3.7	15
157	INTERACTIVE ROBUST CONE CONTRACTION METHOD FOR MULTIPLE OBJECTIVE OPTIMIZATION PROBLEMS. International Journal of Information Technology and Decision Making, 2012 , 11, 327-357	2.8	15
156	Global investing risk: a case study of knowledge assessment via rough sets. <i>Annals of Operations Research</i> , 2011 , 185, 105-138	3.2	15
155	Handling imprecise evaluations in multiple criteria decision aiding and robust ordinal regression by n-point intervals. <i>Fuzzy Optimization and Decision Making</i> , 2017 , 16, 127-157	5.1	14
154	Statistical Model for Rough Set Approach to Multicriteria Classification. <i>Lecture Notes in Computer Science</i> , 2007 , 164-175	0.9	14
153	Dominance-Based Rough Set Approach to Decision Involving Multiple Decision Makers. <i>Lecture Notes in Computer Science</i> , 2006 , 306-317	0.9	14
152	Handling Various Types of Uncertainty in the Rough Set Approach. <i>Workshops in Computing</i> , 1994 , 366-	-376	14

151	Probabilistic Rough Sets 2015 , 387-411	13
150	Development of a Decision Algorithm to Support Emergency Triage of Scrotal Pain and its Implementation in the met system. <i>Infor</i> , 2005 , 43, 287-301	13
149	Prediction of antifungal activity of gemini imidazolium compounds. <i>BioMed Research International</i> , 2015 , 2015, 392326	12
148	On Variable Consistency Dominance-Based Rough Set Approaches. <i>Lecture Notes in Computer Science</i> , 2006 , 191-202	12
147	Use Of Rough Sets Analysis To Classify Siberian Forest Ecosystems According To Net Primary Production Of Phytomass. <i>Infor</i> , 2000 , 38, 145-160	12
146	Triage of the child with abdominal pain: A clinical algorithm for emergency patient management. Paediatrics and Child Health, 2001 , 6, 23-8	12
145	Cone contraction method with visual interaction for multiple-objective non-linear programmes. <i>Journal of Multi-Criteria Decision Analysis</i> , 1992 , 1, 29-46	12
144	Ordinal Classification with Decision Rules 2007 , 169-181	12
143	Rule-Based Estimation of Attribute Relevance. <i>Lecture Notes in Computer Science</i> , 2011 , 36-44 0.9	12
142	The LBS-Discrete Interactive Procedure for Multiple-Criteria Analysis of Decision Problems 1997 , 320-330	12
141	Additive Preference Model with Piecewise Linear Components Resulting from Dominance-Based Rough Set Approximations. <i>Lecture Notes in Computer Science</i> , 2006 , 499-508	12
140	Mining Association Rules in Preference-Ordered Data. <i>Lecture Notes in Computer Science</i> , 2002 , 442-450 o.9	12
139	Robust ordinal regression for decision under risk and uncertainty. <i>Journal of Business Economics</i> , 2016 , 86, 55-83	11
138	Robust Ordinal Regression 2014 , 1-10	11
137	Granular Computing for Reasoning about Ordered Data: The Dominance-Based Rough Set Approach347-373	3 11
136	A New Proposal for Fuzzy Rough Approximations and Gradual Decision Rule Representation. Lecture Notes in Computer Science, 2004 , 319-342	11
135	Designing manEhachine interactions for mobile clinical systems: MET triage support using Palm handhelds. <i>European Journal of Operational Research</i> , 2007 , 177, 1409-1417	10
134	Monotonic Variable Consistency Rough Set Approaches 2007 , 126-133	10

133	Fuzzy Set Extensions of the Dominance-Based Rough Set Approach 2008 , 239-261		10
132	Machine-learned models using hematological inflammation markers in the prediction of short-term acute coronary syndrome outcomes. <i>Journal of Translational Medicine</i> , 2018 , 16, 334	8.5	10
131	Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction. <i>Omega</i> , 2021 , 104, 102491	7.2	10
130	With a little help from a computer: discriminating between bacterial and viral meningitis based on dominance-based rough set approach analysis. <i>Medicine (United States)</i> , 2017 , 96, e7635	1.8	9
129	Variable Consistency Bagging Ensembles. Lecture Notes in Computer Science, 2010, 40-52	0.9	9
128	Optimization of pellets manufacturing process using rough set theory. <i>European Journal of Pharmaceutical Sciences</i> , 2018 , 124, 295-303	5.1	8
127	Rough Set Methodology for Decision Aiding 2015 , 349-370		8
126	The Bipolar Complemented de Morgan Brouwer-Zadeh Distributive Lattice as an Algebraic Structure for the Dominance-based Rough Set Approach. <i>Fundamenta Informaticae</i> , 2012 , 115, 25-56	1	8
125	Multiple Criteria Hierarchy Process for the Choquet Integral. <i>Lecture Notes in Computer Science</i> , 2013 , 475-489	0.9	8
124	Algebra and Topology for Dominance-Based Rough Set Approach. <i>Studies in Computational Intelligence</i> , 2010 , 43-78	0.8	8
123	Multi-criteria assignment problem with incompatibility and capacity constraints. <i>Annals of Operations Research</i> , 2006 , 147, 287-316	3.2	8
122	Dominance-Based Rough Set Approach to Knowledge Discovery (II): Extensions and Applications 2004 , 553-612		8
121	Bayesian Confirmation Measures within Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2004 , 264-273	0.9	8
120	Solving Regression by Learning an Ensemble of Decision Rules. <i>Lecture Notes in Computer Science</i> , 2008 , 533-544	0.9	8
119	Ensemble of Decision Rules for Ordinal Classification with Monotonicity Constraints 2008, 260-267		8
118	Learning of Rule Ensembles for Multiple Attribute Ranking Problems 2010 , 217-247		8
117	Preference-based cone contraction algorithms for interactive evolutionary multiple objective optimization. <i>Swarm and Evolutionary Computation</i> , 2020 , 52, 100602	9.8	8
116	Inducing probability distributions on the set of value functions by Subjective Stochastic Ordinal Regression. <i>Knowledge-Based Systems</i> , 2016 , 112, 26-36	7.3	8

115	Rough Sets and Gradual Decision Rules 2003 , 156-164		8
114	Learning the preferences of physicians for the organization of result lists of medical evidence articles. <i>Methods of Information in Medicine</i> , 2014 , 53, 344-56	1.5	7
113	Rule-Based Approach to Multicriteria Ranking 2013 , 127-160		7
112	Rough Set Approach to Customer Satisfaction Analysis. <i>Lecture Notes in Computer Science</i> , 2006 , 284-29	5 5.9	7
111	The Light Beam Search Dutranking Based Interactive Procedure for Multiple-Objective Mathematical Programming. <i>Nonconvex Optimization and Its Applications</i> , 1995 , 129-146		7
110	Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. <i>European Journal of Operational Research</i> , 2022 ,	5.6	7
109	Mining Association Rules with Respect to Support and Anti-support-Experimental Results. <i>Lecture Notes in Computer Science</i> , 2007 , 534-542	0.9	7
108	On Topological Dominance-based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2010 , 21-45	0.9	7
107	An Interactive Method for Multiobjective Linear Programming with Fuzzy Parameters and Its Application to Water Supply Planning 1987 , 396-414		7
106	Second-Order Rough Approximations in Multi-criteria Classification with Imprecise Evaluations and Assignments. <i>Lecture Notes in Computer Science</i> , 2005 , 54-63	0.9	7
105	A Novel Method for Elimination of Inconsistencies in Ordinal Classification with Monotonicity Constraints. <i>Fundamenta Informaticae</i> , 2013 , 126, 377-395	1	6
104	Finding Meaningful Bayesian Confirmation Measures. Fundamenta Informaticae, 2013, 127, 161-176	1	6
103	Rough Set Methodology in Clinical Practice: Controlled Hospital Trial of the MET System. <i>Lecture Notes in Computer Science</i> , 2004 , 805-814	0.9	6
102	Optimized Generalized Decision in Dominance-Based Rough Set Approach 2007 , 118-125		6
101	Dominance-Based Rough Set Approach on Pairwise Comparison Tables to Decision Involving Multiple Decision Makers. <i>Lecture Notes in Computer Science</i> , 2011 , 126-135	0.9	6
100	Induction of Ordinal Classification Rules from Incomplete Data. <i>Lecture Notes in Computer Science</i> , 2012 , 56-65	0.9	6
99	Fuzzy extensions of the dominance-based rough set approach. <i>International Journal of Approximate Reasoning</i> , 2021 , 129, 1-19	3.6	6
98	Quality of Rough Approximation in Multi-criteria Classification Problems. <i>Lecture Notes in Computer Science</i> , 2006 , 318-327	0.9	6

97	Dominance-Based Rough Set Approach to Interactive Evolutionary Multiobjective Optimization. <i>Studies in Fuzziness and Soft Computing</i> , 2010 , 225-260	0.7	5
96	Mining decision-rule preference model from rough approximation of preference relation		5
95	Fuzzy Multi-Mode Resource-Constrained Project Scheduling with multiple Objectives. <i>Profiles in Operations Research</i> , 1999 , 353-380	1	5
94	Production scheduling on parallel machines subject to staircase demands. <i>Engineering Costs and Production Economics</i> , 1988 , 14, 11-17		5
93	Evaluating Importance of Conditions in the Set of Discovered Rules. <i>Lecture Notes in Computer Science</i> , 2007 , 314-321	0.9	5
92	Algebraic Structures for Dominance-Based Rough Set Approach 2008 , 252-259		5
91	Case-Based Reasoning Using Gradual Rules Induced from Dominance-Based Rough Approximations 2008 , 268-275		5
90	The Possible and the Necessary for Multiple Criteria Group Decision. <i>Lecture Notes in Computer Science</i> , 2009 , 203-214	0.9	5
89	Ordinal Classification with Monotonicity Constraints by Variable Consistency Bagging. <i>Lecture Notes in Computer Science</i> , 2010 , 392-401	0.9	5
88	Preference disaggregation method for value-based multi-decision sorting problems with a real-world application in nanotechnology. <i>Knowledge-Based Systems</i> , 2021 , 218, 106879	7-3	5
87	Generalizing Rough Set Theory Through Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2005 , 1-11	0.9	5
86	Generating a set of association and decision rules with statistically representative support and anti-support. <i>Information Sciences</i> , 2014 , 277, 56-70	7.7	4
85	Outranking-Based Interactive Exploration of a Set of Multicriteria Alternatives. <i>Journal of Multi-Criteria Decision Analysis</i> , 1997 , 6, 93-106	1.9	4
84	Measuring Attractiveness of Rules from the Viewpoint of Knowledge Representation, Prediction and Efficiency of Intervention. <i>Lecture Notes in Computer Science</i> , 2005 , 11-22	0.9	4
83	Importance and Interaction of Conditions in Decision Rules. <i>Lecture Notes in Computer Science</i> , 2002 , 255-262	0.9	4
82	Inducing Robust Decision Rules from Rough Approximations of a Preference Relation. <i>Lecture Notes in Computer Science</i> , 2004 , 118-132	0.9	4
81	Dominance-Based Rough Set Approach and Bipolar Abstract Rough Approximation Spaces. <i>Lecture Notes in Computer Science</i> , 2008 , 31-40	0.9	4
80	New Applications and Theoretical Foundations of the Dominance-based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2010 , 2-3	0.9	4

(2012-2013)

79	Empirical Risk Minimization for Variable Precision Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2013 , 133-144	0.9	4
78	Analysis of Diagnostic Symptoms in Vibroacoustic Diagnostics by Means of the Rough Sets Theory 1992 , 33-48		4
77	Sensitivity of Rough Classification to Changes in Norms of Attributes 1992 , 363-372		4
76	Supporting contaminated sites management with Multiple Criteria Decision Analysis: Demonstration of a regulation-consistent approach <i>Journal of Cleaner Production</i> , 2021 , 316, 1-10	10.3	4
75	Application of Bayesian Confirmation Measures for Mining Rules from Support-Confidence Pareto-Optimal Set. <i>Lecture Notes in Computer Science</i> , 2006 , 1018-1026	0.9	4
74	Rule-Based Decision Support in Multicriteria Choice and Ranking. <i>Lecture Notes in Computer Science</i> , 2001 , 29-47	0.9	4
73	Application of Rough Set Theory to Prediction of Antimicrobial Activity of Bis-Quaternary Imidazolium Chlorides. <i>Fundamenta Informaticae</i> , 2014 , 132, 315-330	1	3
72	Label Ranking: A New Rule-Based Label Ranking Method. <i>Communications in Computer and Information Science</i> , 2012 , 613-623	0.3	3
71	Probabilistic Rough Set Approaches to Ordinal Classification with Monotonicity Constraints. <i>Lecture Notes in Computer Science</i> , 2010 , 99-108	0.9	3
70	Multicriteria Choice and Ranking Using Decision Rules Induced from Rough Approximation of Graded Preference Relations. <i>Lecture Notes in Computer Science</i> , 2004 , 510-522	0.9	3
69	Cost-minimal preemptive scheduling of independent jobs with release and due dates on open shop under resource constraints. <i>Information Processing Letters</i> , 1979 , 9, 233-237	0.8	3
68	Robust Ranking of Universities Evaluated by Hierarchical and Interacting Criteria. <i>Profiles in Operations Research</i> , 2019 , 145-192	1	3
67	Inducing Jury Preferences in Terms of Acoustic Features of Violin Sounds. <i>Lecture Notes in Computer Science</i> , 2004 , 492-497	0.9	3
66	Assessing the Quality of Rules with a New Monotonic Interestingness Measure Z. <i>Lecture Notes in Computer Science</i> , 2008 , 556-565	0.9	3
65	Dominance-Based Rough Set Approach to Preference Learning from Pairwise Comparisons in Case of Decision under Uncertainty. <i>Lecture Notes in Computer Science</i> , 2010 , 584-594	0.9	3
64	Interactive Multiobjective Mixed-Integer Optimization Using Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2011 , 241-253	0.9	3
63	Professor Zdzisłw Pawlak (1926-2006): Founder of the Polish School of Artificial Intelligence. <i>Intelligent Systems Reference Library</i> , 2013 , 1-56	0.8	3
62	Application of Rough Set Theory to Prediction of Antimicrobial Activity of Bis-quaternary Ammonium Chlorides. <i>Lecture Notes in Computer Science</i> , 2012 , 107-116	0.9	3

61	Extending Concordance and Discordance Relations to Hierarchical Sets of Criteria in ELECTRE-III Method. <i>Lecture Notes in Computer Science</i> , 2012 , 78-89	0.9	3
60	Comparison of the Rough Sets Approach and Probabilistic Data Analysis Techniques on a Common Set of Medical Data 1992 , 251-265		3
59	Empirical risk minimization for dominance-based rough set approaches. <i>Information Sciences</i> , 2021 , 567, 395-417	7.7	3
58	Comments on: Multicriteria decision systems for financial problems. <i>Top</i> , 2013 , 21, 268-274	1.3	2
57	Robust Ordinal Regression for Dominance-Based Rough Set Approach under Uncertainty. <i>Lecture Notes in Computer Science</i> , 2014 , 77-87	0.9	2
56	Dominance-Based Rough Set Approach to Reasoning about Ordinal Data - A Tutorial 2008 , 21-22		2
55	Fuzzy-Rough Modus Ponens and Modus Tollens as a Basis for Approximate Reasoning. <i>Lecture Notes in Computer Science</i> , 2004 , 84-94	0.9	2
54	Fuzzy Rough Sets and Multiple-Premise Gradual Decision Rules. <i>Lecture Notes in Computer Science</i> , 2006 , 148-163	0.9	2
53	Ensembles of Decision Rules for Solving Binary Classification Problems in the Presence of Missing Values. <i>Lecture Notes in Computer Science</i> , 2006 , 224-234	0.9	2
52	Rough Set Analysis of Classification Data with Missing Values. <i>Lecture Notes in Computer Science</i> , 2017 , 552-565	0.9	2
51	A Concordance-Discordance Approach to Multi-Criteria Ranking of Actions with Fuzzy Evaluations 1997 , 85-93		2
50	Case-Based Reasoning Using Dominance-Based Decision Rules. <i>Lecture Notes in Computer Science</i> , 2011 , 404-413	0.9	2
49	Rough Sets in Decision Making 2012 , 2727-2760		2
48	Analysis of Symmetry Properties for Bayesian Confirmation Measures. <i>Lecture Notes in Computer Science</i> , 2012 , 207-214	0.9	2
47	The hierarchical SMAA-PROMETHEE method applied to assess the sustainability of European cities. <i>Applied Intelligence</i> , 2021 , 51, 6430-6448	4.9	2
46	Granular representation of OWA-based fuzzy rough sets. Fuzzy Sets and Systems, 2021,	3.7	2
45	Structure-Activity Relationships of the Imidazolium Compounds as Antibacterials of and. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2
44	Differential Diagnosis of Bacterial and Viral Meningitis Using Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2019 , 29-38	0.9	2

43	Explainable Interactive Evolutionary Multiobjective Optimization. SSRN Electronic Journal,	1	2
42	Distinguishing Vagueness from Ambiguity in Rough Set Approximations. <i>International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems</i> , 2018 , 26, 89-125	0.8	2
41	Scheduling preemptable tasks on unrelated processors with additional resources to minimize schedule length. <i>Lecture Notes in Computer Science</i> , 1978 , 536-547	0.9	2
40	Application of Dominance-Based Rough Set Approach for Optimization of Pellets Tableting Process. <i>Pharmaceutics</i> , 2020 , 12,	6.4	1
39	Consistency Driven Feature Subspace Aggregating for Ordinal Classification. <i>Lecture Notes in Computer Science</i> , 2016 , 580-589	0.9	1
38	Decision Rule Preference Model 2014 , 1-16		1
37	Dominance-Based Rough Set Approach to Granular Computing 2010 , 439-496		1
36	Measuring the Expected Impact of Decision Rule Application. <i>Lecture Notes in Computer Science</i> , 2004 , 523-528	0.9	1
35	Interactive Analysis of Preference-Ordered Data Using Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2006 , 489-498	0.9	1
34	Relationship Between Loss Functions and Confirmation Measures. <i>Lecture Notes in Computer Science</i> , 2007 , 338-345	0.9	1
33	Dominance-Based Rough Set Approach to Multiple Criteria Ranking with Sorting-Specific Preference Information. <i>Studies in Computational Intelligence</i> , 2016 , 155-171	0.8	1
32	Empirical Risk Minimization for Variable Consistency Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2015 , 63-72	0.9	1
31	Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization. <i>Studies in Computational Intelligence</i> , 2018 , 293-309	0.8	1
30	Hierarchical Clustering of Text Corpora Using Suffix Trees 2003 , 179-188		1
29	On Different Ways of Handling Inconsistencies in Ordinal Classification with Monotonicity Constraints. <i>Communications in Computer and Information Science</i> , 2012 , 300-309	0.3	1
28	Similarity-Based Classification with Dominance-Based Decision Rules. <i>Lecture Notes in Computer Science</i> , 2016 , 355-364	0.9	1
27	Rough Set Approach to Knowledge Discovery about Preferences. <i>Lecture Notes in Computer Science</i> , 2009 , 1-21	0.9	1
26	Learnability in Rough Set Approaches. <i>Lecture Notes in Computer Science</i> , 2010 , 402-411	0.9	1

25	Towards Telemedical Centers 2013 , 805-829	1
24	Multiple Criteria Decision Support 2021 , 893-920	1
23	Interpretation of Variable Consistency Dominance-Based Rough Set Approach by Minimization of Asymmetric Loss Function. <i>Lecture Notes in Computer Science</i> , 2019 , 135-145	0.9 0
22	Knowledge Discovery about Preferences Using the Dominance-Based Rough Set Approach. <i>Lecture Notes in Computer Science</i> , 2010 , 4-5	0.9
21	Modus ponens versus modus tollens associated with rough gradual decision rules induced from a decision table. <i>International Journal of Hybrid Intelligent Systems</i> , 2005 , 2, 109-131	0.9
20	The rough sets approach to knowledge analysis for classification support in technical diagnostics of mechanical objects 1992 , 556-565	
19	Multiple Criteria Decision Support 2020 , 1-28	
18	Rough Sets Meet Statistics - A New View on Rough Set Reasoning About Numerical Data. <i>Lecture Notes in Computer Science</i> , 2020 , 78-92	0.9
17	Telesfor ITelemedical Real-Time Communication Support System. <i>Advances in Soft Computing</i> , 2008 , 497-504	
16	Aggregation of Stochastic Rankings in Group Decision Making. <i>Studies in Systems, Decision and Control</i> , 2022 , 83-101	0.8
15	Possibility and Necessity Measures in Dominance-based Rough Set Approach 2003 , 129-134	
14	SEQUENTIAL CONSTRUCTION OF FEATURES BASED ON GENETICALLY TRANSFORMED DATA. <i>Advances in Natural Computation</i> , 2004 , 623-642	
13	ROUGH CLASSIFICATION IN INCOMPLETE INFORMATION SYSTEMS 1989 , 1347-1357	
12	Multicriteria Task Allocation to Heterogenous Processors with Capacity and Mutual Exclusion Constra	ints327-364
11	Rough Sets in Decision Making 2015 , 1-47	
10	Multi-objective Search for Comprehensible Rule Ensembles. <i>Lecture Notes in Computer Science</i> , 2016 , 503-513	0.9
9	Distinguishing Vagueness from Ambiguity in Dominance-Based Rough Set Approach by Means of a Bipolar Pawlak-Brouwer-Zadeh Lattice. <i>Lecture Notes in Computer Science</i> , 2017 , 81-93	0.9
8	Interactive Robust Multiobjective Optimization Driven by Decision Rule Preference Model. <i>Lecture Notes in Computer Science</i> , 2009 , 1-4	0.9

LIST OF PUBLICATIONS

7	Ordinal Qualitative Scales. Lecture Notes in Economics and Mathematical Systems, 2010, 269-276	0.4
6	Beyond Sequential Covering Boosted Decision Rules. Studies in Computational Intelligence, 2010 , 209-7	2 25 .8
5	Alternative Normalization Schemas for Bayesian Confirmation Measures. <i>Lecture Notes in Computer Science</i> , 2010 , 230-239	0.9
4	Discovering the Preferences of Physicians with Regards to Rank-Ordered Medical Documents. <i>Communications in Computer and Information Science</i> , 2012 , 142-150	0.3
3	Distinguishing Vagueness from Ambiguity by Means of Pawlak-Brouwer-Zadeh Lattices. <i>Communications in Computer and Information Science</i> , 2012 , 624-632	0.3
2	Multicriteria Task Allocation to Heterogenous Processors with Capacity and Mutual Exclusion Constrai	nts327-364
1	A Rough Set Approach to Novel Compounds Activity Prediction Based on Surface Active Properties and Molecular Descriptors. <i>Lecture Notes in Computer Science</i> , 2014 , 153-160	0.9